利用神经网络方法和多线性回归开发新的细粒度、NSPT 和 CPT 相关性,以支持液化危害分析

IF 1.7 Q2 Social Sciences
Akhmad Muktaf Haifani, Hadi Suntoko, Adi Gunawan Muhammad, Siti Alimah
{"title":"利用神经网络方法和多线性回归开发新的细粒度、NSPT 和 CPT 相关性,以支持液化危害分析","authors":"Akhmad Muktaf Haifani, Hadi Suntoko, Adi Gunawan Muhammad, Siti Alimah","doi":"10.59670/ml.v20i6.4388","DOIUrl":null,"url":null,"abstract":"Identification and characterization of constituent soil types in the form of Fines Content (FC) values are essential in analyzing the potential of soils to be liquefaction. Multiple Linear Regression is one of the fundamental statistical models used to determine the causality between target and predictor geotechnical parameters.  The study used multilinear regression approaches and artificial neural networks to get optimal results from FC predictions. The study considers the correlation between the SBT Index and FC and several other parameters such as NSPT, Depth, Totally Overburden Stress, Initially Overburden Stress, and Sleeve Friction. The coefficient of determination resulting from the regression process shows a reasonably strong relationship between the independent and target parameters, as much as 61.4%. In comparison, the Neural Network is 96.928%, which indi-cates a nonlinear influence.","PeriodicalId":45345,"journal":{"name":"Migration Letters","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of New Correlation Fines Content, NSPT and CPT Using Neural Network Approach and Multilinear Regression to Support Liquefaction Hazard Analysis\",\"authors\":\"Akhmad Muktaf Haifani, Hadi Suntoko, Adi Gunawan Muhammad, Siti Alimah\",\"doi\":\"10.59670/ml.v20i6.4388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification and characterization of constituent soil types in the form of Fines Content (FC) values are essential in analyzing the potential of soils to be liquefaction. Multiple Linear Regression is one of the fundamental statistical models used to determine the causality between target and predictor geotechnical parameters.  The study used multilinear regression approaches and artificial neural networks to get optimal results from FC predictions. The study considers the correlation between the SBT Index and FC and several other parameters such as NSPT, Depth, Totally Overburden Stress, Initially Overburden Stress, and Sleeve Friction. The coefficient of determination resulting from the regression process shows a reasonably strong relationship between the independent and target parameters, as much as 61.4%. In comparison, the Neural Network is 96.928%, which indi-cates a nonlinear influence.\",\"PeriodicalId\":45345,\"journal\":{\"name\":\"Migration Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Migration Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59670/ml.v20i6.4388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Migration Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59670/ml.v20i6.4388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

以细粒含量 (FC) 值的形式识别和描述土壤的组成类型对于分析土壤的液化潜力至关重要。多元线性回归是用于确定目标岩土参数与预测岩土参数之间因果关系的基本统计模型之一。 本研究采用多元线性回归方法和人工神经网络,以获得 FC 预测的最佳结果。研究考虑了 SBT 指数和 FC 与其他几个参数(如 NSPT、深度、完全压覆应力、初始压覆应力和套筒摩擦力)之间的相关性。回归过程得出的确定系数显示,独立参数与目标参数之间的关系相当密切,高达 61.4%。相比之下,神经网络的确定系数为 96.928%,表明存在非线性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of New Correlation Fines Content, NSPT and CPT Using Neural Network Approach and Multilinear Regression to Support Liquefaction Hazard Analysis
Identification and characterization of constituent soil types in the form of Fines Content (FC) values are essential in analyzing the potential of soils to be liquefaction. Multiple Linear Regression is one of the fundamental statistical models used to determine the causality between target and predictor geotechnical parameters.  The study used multilinear regression approaches and artificial neural networks to get optimal results from FC predictions. The study considers the correlation between the SBT Index and FC and several other parameters such as NSPT, Depth, Totally Overburden Stress, Initially Overburden Stress, and Sleeve Friction. The coefficient of determination resulting from the regression process shows a reasonably strong relationship between the independent and target parameters, as much as 61.4%. In comparison, the Neural Network is 96.928%, which indi-cates a nonlinear influence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Migration Letters
Migration Letters DEMOGRAPHY-
自引率
23.50%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信