M. Arratia, Bruce Bagby, Peter Carney, Jiajun Huang, R. Milton, S. Paul, S. Preins, Miguel Rodriguez, Weibin Zhang
{"title":"在杰斐逊实验室使用 4 GeV 正电子对用于 EIC 的瓦上 SiPM 热量计插件的首个原型进行光束测试","authors":"M. Arratia, Bruce Bagby, Peter Carney, Jiajun Huang, R. Milton, S. Paul, S. Preins, Miguel Rodriguez, Weibin Zhang","doi":"10.3390/instruments7040043","DOIUrl":null,"url":null,"abstract":"We recently proposed a high-granularity calorimeter insert for the Electron-Ion Collider (EIC) that uses plastic scintillator tiles read out by SiPMs. Among its features are an ASIC-away-from-SiPM strategy for reducing cooling requirements and minimizing space use, along with employing 3D-printed frames to reduce optical crosstalk and dead areas. To evaluate these features, we built a 40-channel prototype and tested it using a 4 GeV positron beam at Jefferson Laboratory. The measured energy spectra and 3D shower shapes are well described by simulations, confirming the effectiveness of the design, construction techniques, and calibration strategy. This constitutes the first use of SiPM-on-tile technology in an EIC detector design.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beam Test of the First Prototype of SiPM-on-Tile Calorimeter Insert for the EIC Using 4 GeV Positrons at Jefferson Laboratory\",\"authors\":\"M. Arratia, Bruce Bagby, Peter Carney, Jiajun Huang, R. Milton, S. Paul, S. Preins, Miguel Rodriguez, Weibin Zhang\",\"doi\":\"10.3390/instruments7040043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We recently proposed a high-granularity calorimeter insert for the Electron-Ion Collider (EIC) that uses plastic scintillator tiles read out by SiPMs. Among its features are an ASIC-away-from-SiPM strategy for reducing cooling requirements and minimizing space use, along with employing 3D-printed frames to reduce optical crosstalk and dead areas. To evaluate these features, we built a 40-channel prototype and tested it using a 4 GeV positron beam at Jefferson Laboratory. The measured energy spectra and 3D shower shapes are well described by simulations, confirming the effectiveness of the design, construction techniques, and calibration strategy. This constitutes the first use of SiPM-on-tile technology in an EIC detector design.\",\"PeriodicalId\":13582,\"journal\":{\"name\":\"Instruments\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments7040043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments7040043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Beam Test of the First Prototype of SiPM-on-Tile Calorimeter Insert for the EIC Using 4 GeV Positrons at Jefferson Laboratory
We recently proposed a high-granularity calorimeter insert for the Electron-Ion Collider (EIC) that uses plastic scintillator tiles read out by SiPMs. Among its features are an ASIC-away-from-SiPM strategy for reducing cooling requirements and minimizing space use, along with employing 3D-printed frames to reduce optical crosstalk and dead areas. To evaluate these features, we built a 40-channel prototype and tested it using a 4 GeV positron beam at Jefferson Laboratory. The measured energy spectra and 3D shower shapes are well described by simulations, confirming the effectiveness of the design, construction techniques, and calibration strategy. This constitutes the first use of SiPM-on-tile technology in an EIC detector design.