{"title":"利用由水和非球形沸石氧化铝纳米颗粒组成的纳米流体冷却植物油的螺旋板热交换器分析","authors":"Élcio Nogueira","doi":"10.59400/mea.v1i1.67","DOIUrl":null,"url":null,"abstract":"The objective is to use dimensionless analysis through the thermal efficiency method to determine the thermohydraulic performance of a spiral plate heat exchanger (SPHE) used to cool sunflower oil. The coolant consists of water as a base fluid and non-spherical Boehmite Alumina nanoparticles with a defined volume fraction. The concept of thermal efficiency for heat exchangers is used to determine the main quantities used in the analysis. Graphical results are presented for the number of thermal units (NTU), thermal efficiency, thermal effectiveness, hot fluid outlet temperature, thermal and viscous irreversibilities, and Bejan number. The analyzed heat exchanger provides excellent thermal performance for refrigerants consisting of water and non-spherical nanoparticles in platelets or cylindrical, with a volume fraction equal to 12%. Viscous dissipation significantly increases concerning the dissipation associated with pure water, but the cost-benefit is within reason for the proposed objective, within the flow rate under analysis.","PeriodicalId":509420,"journal":{"name":"Mechanical Engineering Advances","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of spiral plate heat exchanger used to cool vegetable oil with nanofluid consisting of water and non-spherical boehmite alumina nanoparticles\",\"authors\":\"Élcio Nogueira\",\"doi\":\"10.59400/mea.v1i1.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective is to use dimensionless analysis through the thermal efficiency method to determine the thermohydraulic performance of a spiral plate heat exchanger (SPHE) used to cool sunflower oil. The coolant consists of water as a base fluid and non-spherical Boehmite Alumina nanoparticles with a defined volume fraction. The concept of thermal efficiency for heat exchangers is used to determine the main quantities used in the analysis. Graphical results are presented for the number of thermal units (NTU), thermal efficiency, thermal effectiveness, hot fluid outlet temperature, thermal and viscous irreversibilities, and Bejan number. The analyzed heat exchanger provides excellent thermal performance for refrigerants consisting of water and non-spherical nanoparticles in platelets or cylindrical, with a volume fraction equal to 12%. Viscous dissipation significantly increases concerning the dissipation associated with pure water, but the cost-benefit is within reason for the proposed objective, within the flow rate under analysis.\",\"PeriodicalId\":509420,\"journal\":{\"name\":\"Mechanical Engineering Advances\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Engineering Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59400/mea.v1i1.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/mea.v1i1.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of spiral plate heat exchanger used to cool vegetable oil with nanofluid consisting of water and non-spherical boehmite alumina nanoparticles
The objective is to use dimensionless analysis through the thermal efficiency method to determine the thermohydraulic performance of a spiral plate heat exchanger (SPHE) used to cool sunflower oil. The coolant consists of water as a base fluid and non-spherical Boehmite Alumina nanoparticles with a defined volume fraction. The concept of thermal efficiency for heat exchangers is used to determine the main quantities used in the analysis. Graphical results are presented for the number of thermal units (NTU), thermal efficiency, thermal effectiveness, hot fluid outlet temperature, thermal and viscous irreversibilities, and Bejan number. The analyzed heat exchanger provides excellent thermal performance for refrigerants consisting of water and non-spherical nanoparticles in platelets or cylindrical, with a volume fraction equal to 12%. Viscous dissipation significantly increases concerning the dissipation associated with pure water, but the cost-benefit is within reason for the proposed objective, within the flow rate under analysis.