用于磁场动态成像的量子钻石显微镜

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
Jiashen Tang, Zechuan Yin, C. Hart, John W. Blanchard, J. Oon, Smriti Bhalerao, J. Schloss, M. Turner, R. Walsworth
{"title":"用于磁场动态成像的量子钻石显微镜","authors":"Jiashen Tang, Zechuan Yin, C. Hart, John W. Blanchard, J. Oon, Smriti Bhalerao, J. Schloss, M. Turner, R. Walsworth","doi":"10.1116/5.0176317","DOIUrl":null,"url":null,"abstract":"Wide-field imaging of magnetic signals using ensembles of nitrogen-vacancy (NV) centers in diamond has garnered increasing interest due to its combination of micron-scale resolution, millimeter-scale field of view, and compatibility with diverse samples from across the physical and life sciences. Recently, wide-field NV magnetic imaging based on the Ramsey protocol has achieved uniform and enhanced sensitivity compared to conventional measurements. Here, we integrate the Ramsey-based protocol with spin-bath driving to extend the NV spin dephasing time and improve magnetic sensitivity. We also employ a high-speed camera to enable dynamic wide-field magnetic imaging. We benchmark the utility of this quantum diamond microscope (QDM) by imaging magnetic fields produced from a fabricated wire phantom. Over a 270 × 270 μm2 field of view, a median per-pixel magnetic sensitivity of 4.1(1) nT /Hz is realized with a spatial resolution ≲ 10 μm and sub-millisecond temporal resolution. Importantly, the spatial magnetic noise floor can be reduced to the picotesla scale by time-averaging and signal modulation, which enables imaging of a magnetic-field pattern with a peak-to-peak amplitude difference of about 300 pT. Finally, we discuss potential new applications of this dynamic QDM in studying biomineralization and electrically active cells.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":"19 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum diamond microscope for dynamic imaging of magnetic fields\",\"authors\":\"Jiashen Tang, Zechuan Yin, C. Hart, John W. Blanchard, J. Oon, Smriti Bhalerao, J. Schloss, M. Turner, R. Walsworth\",\"doi\":\"10.1116/5.0176317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide-field imaging of magnetic signals using ensembles of nitrogen-vacancy (NV) centers in diamond has garnered increasing interest due to its combination of micron-scale resolution, millimeter-scale field of view, and compatibility with diverse samples from across the physical and life sciences. Recently, wide-field NV magnetic imaging based on the Ramsey protocol has achieved uniform and enhanced sensitivity compared to conventional measurements. Here, we integrate the Ramsey-based protocol with spin-bath driving to extend the NV spin dephasing time and improve magnetic sensitivity. We also employ a high-speed camera to enable dynamic wide-field magnetic imaging. We benchmark the utility of this quantum diamond microscope (QDM) by imaging magnetic fields produced from a fabricated wire phantom. Over a 270 × 270 μm2 field of view, a median per-pixel magnetic sensitivity of 4.1(1) nT /Hz is realized with a spatial resolution ≲ 10 μm and sub-millisecond temporal resolution. Importantly, the spatial magnetic noise floor can be reduced to the picotesla scale by time-averaging and signal modulation, which enables imaging of a magnetic-field pattern with a peak-to-peak amplitude difference of about 300 pT. Finally, we discuss potential new applications of this dynamic QDM in studying biomineralization and electrically active cells.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0176317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0176317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用金刚石中的氮-空穴(NV)中心集合对磁信号进行宽场成像,因其兼具微米级分辨率、毫米级视场以及与物理和生命科学领域各种样品的兼容性而日益受到关注。最近,与传统测量相比,基于拉姆齐协议的宽视场 NV 磁成像技术实现了均匀且更高的灵敏度。在这里,我们将基于拉姆齐的协议与自旋浴驱动相结合,延长了 NV 自旋去相时间,提高了磁灵敏度。我们还采用了高速相机来实现动态宽场磁成像。我们通过对制造的金属丝模型产生的磁场进行成像,对这种量子钻石显微镜(QDM)的实用性进行了基准测试。在 270 × 270 μm2 的视场中,每个像素的中值磁灵敏度为 4.1(1) nT /Hz,空间分辨率≲ 10 μm,时间分辨率为亚毫秒级。重要的是,通过时间平均化和信号调制,空间磁场噪声本底可降至皮特斯拉级,从而实现峰-峰振幅差约为 300 pT 的磁场模式成像。最后,我们讨论了这种动态 QDM 在研究生物矿化和电活性细胞方面的潜在新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum diamond microscope for dynamic imaging of magnetic fields
Wide-field imaging of magnetic signals using ensembles of nitrogen-vacancy (NV) centers in diamond has garnered increasing interest due to its combination of micron-scale resolution, millimeter-scale field of view, and compatibility with diverse samples from across the physical and life sciences. Recently, wide-field NV magnetic imaging based on the Ramsey protocol has achieved uniform and enhanced sensitivity compared to conventional measurements. Here, we integrate the Ramsey-based protocol with spin-bath driving to extend the NV spin dephasing time and improve magnetic sensitivity. We also employ a high-speed camera to enable dynamic wide-field magnetic imaging. We benchmark the utility of this quantum diamond microscope (QDM) by imaging magnetic fields produced from a fabricated wire phantom. Over a 270 × 270 μm2 field of view, a median per-pixel magnetic sensitivity of 4.1(1) nT /Hz is realized with a spatial resolution ≲ 10 μm and sub-millisecond temporal resolution. Importantly, the spatial magnetic noise floor can be reduced to the picotesla scale by time-averaging and signal modulation, which enables imaging of a magnetic-field pattern with a peak-to-peak amplitude difference of about 300 pT. Finally, we discuss potential new applications of this dynamic QDM in studying biomineralization and electrically active cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信