面向未来无线网络的多代理强化学习中的新兴通信

Marwa Chafii, Salmane Naoumi, Réda Alami, Ebtesam Almazrouei, M. Bennis, M. Debbah
{"title":"面向未来无线网络的多代理强化学习中的新兴通信","authors":"Marwa Chafii, Salmane Naoumi, Réda Alami, Ebtesam Almazrouei, M. Bennis, M. Debbah","doi":"10.1109/IOTM.001.2300102","DOIUrl":null,"url":null,"abstract":"In different wireless network scenarios, multiple network entities need to cooperate in order to achieve a common task with minimum delay and energy consumption. Future wireless networks mandate exchanging high dimensional data in dynamic and uncertain environments, therefore implementing communication control tasks becomes challenging and highly complex. Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems with partially observable states in a cooperative fashion where agents build an emergent communication protocol to solve complex tasks. This article articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities to solve complex tasks such as autonomous driving, robot navigation, flying base stations network planning, and smart city applications. An overview of EC-MARL algorithms and their design criteria are provided while presenting use cases and research opportuni-ties on this emerging topic.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"53 1","pages":"18-24"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent Communication in Multi-Agent Reinforcement Learning for Future Wireless Networks\",\"authors\":\"Marwa Chafii, Salmane Naoumi, Réda Alami, Ebtesam Almazrouei, M. Bennis, M. Debbah\",\"doi\":\"10.1109/IOTM.001.2300102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In different wireless network scenarios, multiple network entities need to cooperate in order to achieve a common task with minimum delay and energy consumption. Future wireless networks mandate exchanging high dimensional data in dynamic and uncertain environments, therefore implementing communication control tasks becomes challenging and highly complex. Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems with partially observable states in a cooperative fashion where agents build an emergent communication protocol to solve complex tasks. This article articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities to solve complex tasks such as autonomous driving, robot navigation, flying base stations network planning, and smart city applications. An overview of EC-MARL algorithms and their design criteria are provided while presenting use cases and research opportuni-ties on this emerging topic.\",\"PeriodicalId\":235472,\"journal\":{\"name\":\"IEEE Internet of Things Magazine\",\"volume\":\"53 1\",\"pages\":\"18-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOTM.001.2300102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在不同的无线网络场景中,多个网络实体需要合作,以最小的延迟和能耗完成共同的任务。未来的无线网络必须在动态和不确定的环境中交换高维数据,因此执行通信控制任务变得极具挑战性和高度复杂性。具有突发通信的多代理强化学习(EC-MARL)是一种很有前途的解决方案,它能以合作的方式解决具有部分可观测状态的高维连续控制问题,其中代理建立了一个突发通信协议来解决复杂的任务。本文阐述了 EC-MARL 在未来 6G 无线网络背景下的重要性,它将自主决策能力注入网络实体,以解决自动驾驶、机器人导航、飞行基站网络规划和智慧城市应用等复杂任务。本文概述了 EC-MARL 算法及其设计标准,同时介绍了这一新兴课题的用例和研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergent Communication in Multi-Agent Reinforcement Learning for Future Wireless Networks
In different wireless network scenarios, multiple network entities need to cooperate in order to achieve a common task with minimum delay and energy consumption. Future wireless networks mandate exchanging high dimensional data in dynamic and uncertain environments, therefore implementing communication control tasks becomes challenging and highly complex. Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems with partially observable states in a cooperative fashion where agents build an emergent communication protocol to solve complex tasks. This article articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities to solve complex tasks such as autonomous driving, robot navigation, flying base stations network planning, and smart city applications. An overview of EC-MARL algorithms and their design criteria are provided while presenting use cases and research opportuni-ties on this emerging topic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信