关于加权三角波雅诺夫-切比雪夫极值问题

IF 0.4 Q4 MATHEMATICS, APPLIED
B'ela Nagy, S. R'ev'esz
{"title":"关于加权三角波雅诺夫-切比雪夫极值问题","authors":"B'ela Nagy, S. R'ev'esz","doi":"10.21538/0134-4889-2023-29-4-193-216","DOIUrl":null,"url":null,"abstract":"We investigate the weighted Bojanov-Chebyshev extremal problem for trigonometric polynomials, that is, the minimax problem of minimizing $\\|T\\|_{w,C({\\mathbb T})}$, where $w$ is a sufficiently nonvanishing, upper bounded, nonnegative weight function, the norm is the corresponding weighted maximum norm on the torus ${\\mathbb T}$, and $T$ is a trigonometric polynomial with prescribed multiplicities $\\nu_1,\\ldots,\\nu_n$ of root factors $|\\sin(\\pi(t-z_j))|^{\\nu_j}$. If the $\\nu_j$ are natural numbers and their sum is even, then $T$ is indeed a trigonometric polynomial and the case when all the $\\nu_j$ are 1 covers the Chebyshev extremal problem. Our result will be more general, allowing, in particular, so-called generalized trigonometric polynomials. To reach our goal, we invoke Fenton's sum of translates method. However, altering from the earlier described cases without weight or on the interval, here we find different situations, and can state less about the solutions.","PeriodicalId":44555,"journal":{"name":"Trudy Instituta Matematiki i Mekhaniki UrO RAN","volume":"114 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the weighted trigonometric Bojanov - Chebyshev extremal problem\",\"authors\":\"B'ela Nagy, S. R'ev'esz\",\"doi\":\"10.21538/0134-4889-2023-29-4-193-216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the weighted Bojanov-Chebyshev extremal problem for trigonometric polynomials, that is, the minimax problem of minimizing $\\\\|T\\\\|_{w,C({\\\\mathbb T})}$, where $w$ is a sufficiently nonvanishing, upper bounded, nonnegative weight function, the norm is the corresponding weighted maximum norm on the torus ${\\\\mathbb T}$, and $T$ is a trigonometric polynomial with prescribed multiplicities $\\\\nu_1,\\\\ldots,\\\\nu_n$ of root factors $|\\\\sin(\\\\pi(t-z_j))|^{\\\\nu_j}$. If the $\\\\nu_j$ are natural numbers and their sum is even, then $T$ is indeed a trigonometric polynomial and the case when all the $\\\\nu_j$ are 1 covers the Chebyshev extremal problem. Our result will be more general, allowing, in particular, so-called generalized trigonometric polynomials. To reach our goal, we invoke Fenton's sum of translates method. However, altering from the earlier described cases without weight or on the interval, here we find different situations, and can state less about the solutions.\",\"PeriodicalId\":44555,\"journal\":{\"name\":\"Trudy Instituta Matematiki i Mekhaniki UrO RAN\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trudy Instituta Matematiki i Mekhaniki UrO RAN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21538/0134-4889-2023-29-4-193-216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Instituta Matematiki i Mekhaniki UrO RAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21538/0134-4889-2023-29-4-193-216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了三角多项式的加权波雅诺夫-切比雪夫极值问题,即最小化 $\|T\|_{w,C({\mathbb T})}$ 的 minimax 问题,其中 $w$ 是一个充分非消失的、有上界的非负权重函数,规范是环 ${\mathbb T}$ 上相应的加权最大规范,而 $T$ 是具有规定乘数 $\\mathbb T} 的三角多项式、T$ 是三角多项式,根因子 $|\sin(\pi(t-z_j))|^{\nu_j}$ 的规定乘数为 $\nu_1,\ldots,\nu_n$。如果 $\nu_j$ 是自然数,并且它们的和是偶数,那么 $T$ 确实是一个三角多项式,而当所有 $\nu_j$ 都是 1 时,就涉及到了切比雪夫极值问题。我们的结果将更为宽泛,特别是允许所谓的广义三角多项式。为了达到我们的目标,我们引用了芬顿的平移和方法。然而,与前面描述的无权重或在区间上的情况不同,我们在这里发现了不同的情况,并且可以较少地说明解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the weighted trigonometric Bojanov - Chebyshev extremal problem
We investigate the weighted Bojanov-Chebyshev extremal problem for trigonometric polynomials, that is, the minimax problem of minimizing $\|T\|_{w,C({\mathbb T})}$, where $w$ is a sufficiently nonvanishing, upper bounded, nonnegative weight function, the norm is the corresponding weighted maximum norm on the torus ${\mathbb T}$, and $T$ is a trigonometric polynomial with prescribed multiplicities $\nu_1,\ldots,\nu_n$ of root factors $|\sin(\pi(t-z_j))|^{\nu_j}$. If the $\nu_j$ are natural numbers and their sum is even, then $T$ is indeed a trigonometric polynomial and the case when all the $\nu_j$ are 1 covers the Chebyshev extremal problem. Our result will be more general, allowing, in particular, so-called generalized trigonometric polynomials. To reach our goal, we invoke Fenton's sum of translates method. However, altering from the earlier described cases without weight or on the interval, here we find different situations, and can state less about the solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信