{"title":"准萨萨基流形的伪平行不变子流形","authors":"Tuğba Mert, M. Atc̣eken","doi":"10.47000/tjmcs.1124668","DOIUrl":null,"url":null,"abstract":"In this paper, invariant submanifolds of a para-Sasakian manifold are studied. For a para-Sasakian manifold, pseudoparallel, 2-pseudoparallel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparalel cases are considered and new results are obtained. The necessary and sufficient are given for an invriant submanifold to be totally geodesic under the some conditions.","PeriodicalId":506513,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudoparallel Invariant Submanifolds of a Para-Sasakian Manifold\",\"authors\":\"Tuğba Mert, M. Atc̣eken\",\"doi\":\"10.47000/tjmcs.1124668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, invariant submanifolds of a para-Sasakian manifold are studied. For a para-Sasakian manifold, pseudoparallel, 2-pseudoparallel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparalel cases are considered and new results are obtained. The necessary and sufficient are given for an invriant submanifold to be totally geodesic under the some conditions.\",\"PeriodicalId\":506513,\"journal\":{\"name\":\"Turkish Journal of Mathematics and Computer Science\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47000/tjmcs.1124668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.1124668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pseudoparallel Invariant Submanifolds of a Para-Sasakian Manifold
In this paper, invariant submanifolds of a para-Sasakian manifold are studied. For a para-Sasakian manifold, pseudoparallel, 2-pseudoparallel, Ricci generalized pseudoparallel and 2-Ricci generalized pseudoparalel cases are considered and new results are obtained. The necessary and sufficient are given for an invriant submanifold to be totally geodesic under the some conditions.