{"title":"使用 Naive Bayes 和支持向量机对大规模裁员现象进行情感分析","authors":"Mohd Amiruddin Saddam, Erno Kurniawan D, I. Indra","doi":"10.30591/jpit.v8i3.4884","DOIUrl":null,"url":null,"abstract":"Termination of employment (PHK) on a large scale has a very significant impact on society and the economy. Mass layoffs have led to an increase in the number of unemployed people. Many people who have lost their jobs without a stable source of income struggle to find new jobs. This exacerbated the situation on the labor market and increased the number of unemployed people. Mass layoffs can also reduce economic activity and consumption. The sentiment analysis carried out aims to determine public sentiment regarding the phenomenon of mass layoffs that are currently happening in Indonesia based on positive and negative categories. In this study, the classification method used is the SVM method, which is one of the supervised learning methods in machine learning and also uses Nave Bayes as a comparison method. After classification, the next stage is the testing process using the K-fold cross-validation method. From the various sentiments obtained from Twitter data, it can be concluded that there are around 108 positive sentiments and 333 negative sentiments related to mass layoffs, while the results obtained from the test results using the SVM method show an accuracy of up to 84% while using the Nave Bayes method shows an accuracy of up to 74.1 percent","PeriodicalId":503683,"journal":{"name":"Jurnal Informatika: Jurnal Pengembangan IT","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Sentimen Fenomena PHK Massal Menggunakan Naive Bayes dan Support Vector Machine\",\"authors\":\"Mohd Amiruddin Saddam, Erno Kurniawan D, I. Indra\",\"doi\":\"10.30591/jpit.v8i3.4884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Termination of employment (PHK) on a large scale has a very significant impact on society and the economy. Mass layoffs have led to an increase in the number of unemployed people. Many people who have lost their jobs without a stable source of income struggle to find new jobs. This exacerbated the situation on the labor market and increased the number of unemployed people. Mass layoffs can also reduce economic activity and consumption. The sentiment analysis carried out aims to determine public sentiment regarding the phenomenon of mass layoffs that are currently happening in Indonesia based on positive and negative categories. In this study, the classification method used is the SVM method, which is one of the supervised learning methods in machine learning and also uses Nave Bayes as a comparison method. After classification, the next stage is the testing process using the K-fold cross-validation method. From the various sentiments obtained from Twitter data, it can be concluded that there are around 108 positive sentiments and 333 negative sentiments related to mass layoffs, while the results obtained from the test results using the SVM method show an accuracy of up to 84% while using the Nave Bayes method shows an accuracy of up to 74.1 percent\",\"PeriodicalId\":503683,\"journal\":{\"name\":\"Jurnal Informatika: Jurnal Pengembangan IT\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika: Jurnal Pengembangan IT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30591/jpit.v8i3.4884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika: Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/jpit.v8i3.4884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis Sentimen Fenomena PHK Massal Menggunakan Naive Bayes dan Support Vector Machine
Termination of employment (PHK) on a large scale has a very significant impact on society and the economy. Mass layoffs have led to an increase in the number of unemployed people. Many people who have lost their jobs without a stable source of income struggle to find new jobs. This exacerbated the situation on the labor market and increased the number of unemployed people. Mass layoffs can also reduce economic activity and consumption. The sentiment analysis carried out aims to determine public sentiment regarding the phenomenon of mass layoffs that are currently happening in Indonesia based on positive and negative categories. In this study, the classification method used is the SVM method, which is one of the supervised learning methods in machine learning and also uses Nave Bayes as a comparison method. After classification, the next stage is the testing process using the K-fold cross-validation method. From the various sentiments obtained from Twitter data, it can be concluded that there are around 108 positive sentiments and 333 negative sentiments related to mass layoffs, while the results obtained from the test results using the SVM method show an accuracy of up to 84% while using the Nave Bayes method shows an accuracy of up to 74.1 percent