利用深度学习模型诊断青光眼和白内障疾病

Mehmet Tümay, Zafer Civelek, Mustafa Teke
{"title":"利用深度学习模型诊断青光眼和白内障疾病","authors":"Mehmet Tümay, Zafer Civelek, Mustafa Teke","doi":"10.2339/politeknik.1348143","DOIUrl":null,"url":null,"abstract":"Göz, insanoğlunun en önemli organlarından biri olmasına rağmen birçok hastalığa da maruz kalabilmektedir. Bu hastalıklardan bazılarına toplumda sıklıkla rastlanmaktadır. Bunlardan ikisi katarakt ve glakom olarak bilinen çok önemli göz hastalıklarıdır. Evrişimli Sinir Ağları (ESA), bu hastalıkların erken tanı ve uzman teşhisine yardımcı olmak için kullanılabilir. Bu çalışmada derin öğrenme yöntemlerinden biri olan Evrişimli Sinir Ağları kullanılarak katarakt, glakom ve normal göz dibi görüntüleri sınıflandırılmıştır. Eğitilmiş Ağlar kullanılarak Googlenet, Densenet-201, Xception ve Inception-V3 ağlarının performansları karşılaştırılmıştır. Her ağ için adam, rmsprop ve sgdm optimizasyon yöntemleri uygulanmıştır. Bu çalışma, datasetteki 262 Katarakt, 200 Glakom ve 2816 normal göz dibi görüntüsü kullanılarak yapılmıştır. Görüntüler, yeniden boyutlandırma, arka planı kaldırma, rastgele döndürme ve yeniden boyutlandırma ile önceden işlenmiştir. Matlab ortamında yapılan simülasyonlar sonucunda, diğer ağlara göre en iyi sonuçlar rmsprop optimizasyonlu Xception ağ mimarisi ile elde edilmiştir.","PeriodicalId":16884,"journal":{"name":"Journal of Polytechnic","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Glaucoma and Cataract Disease with Deep Learning Models\",\"authors\":\"Mehmet Tümay, Zafer Civelek, Mustafa Teke\",\"doi\":\"10.2339/politeknik.1348143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Göz, insanoğlunun en önemli organlarından biri olmasına rağmen birçok hastalığa da maruz kalabilmektedir. Bu hastalıklardan bazılarına toplumda sıklıkla rastlanmaktadır. Bunlardan ikisi katarakt ve glakom olarak bilinen çok önemli göz hastalıklarıdır. Evrişimli Sinir Ağları (ESA), bu hastalıkların erken tanı ve uzman teşhisine yardımcı olmak için kullanılabilir. Bu çalışmada derin öğrenme yöntemlerinden biri olan Evrişimli Sinir Ağları kullanılarak katarakt, glakom ve normal göz dibi görüntüleri sınıflandırılmıştır. Eğitilmiş Ağlar kullanılarak Googlenet, Densenet-201, Xception ve Inception-V3 ağlarının performansları karşılaştırılmıştır. Her ağ için adam, rmsprop ve sgdm optimizasyon yöntemleri uygulanmıştır. Bu çalışma, datasetteki 262 Katarakt, 200 Glakom ve 2816 normal göz dibi görüntüsü kullanılarak yapılmıştır. Görüntüler, yeniden boyutlandırma, arka planı kaldırma, rastgele döndürme ve yeniden boyutlandırma ile önceden işlenmiştir. Matlab ortamında yapılan simülasyonlar sonucunda, diğer ağlara göre en iyi sonuçlar rmsprop optimizasyonlu Xception ağ mimarisi ile elde edilmiştir.\",\"PeriodicalId\":16884,\"journal\":{\"name\":\"Journal of Polytechnic\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polytechnic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2339/politeknik.1348143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polytechnic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2339/politeknik.1348143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然眼睛是人类最重要的器官之一,但它也会受到许多疾病的侵袭。其中有些疾病在社会上经常遇到。白内障和青光眼就是其中两种非常重要的眼科疾病。卷积神经网络(DNN)可用于帮助这些疾病的早期诊断和专家诊断。在这项研究中,使用深度学习方法之一的卷积神经网络对白内障、青光眼和正常眼底图像进行了分类。使用训练有素的网络比较了 Googlenet、Densenet-201、Xception 和 Inception-V3 网络的性能。每个网络都应用了 adam、rmsprop 和 sgdm 优化方法。这项研究使用了数据集中的 262 张白内障图像、200 张青光眼图像和 2816 张正常眼底图像。对图像进行了预处理,包括调整大小、去除背景、随机旋转和调整大小。在 Matlab 环境中进行模拟的结果表明,与其他网络相比,采用 Xception 网络架构和 rmsprop 优化技术的结果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of Glaucoma and Cataract Disease with Deep Learning Models
Göz, insanoğlunun en önemli organlarından biri olmasına rağmen birçok hastalığa da maruz kalabilmektedir. Bu hastalıklardan bazılarına toplumda sıklıkla rastlanmaktadır. Bunlardan ikisi katarakt ve glakom olarak bilinen çok önemli göz hastalıklarıdır. Evrişimli Sinir Ağları (ESA), bu hastalıkların erken tanı ve uzman teşhisine yardımcı olmak için kullanılabilir. Bu çalışmada derin öğrenme yöntemlerinden biri olan Evrişimli Sinir Ağları kullanılarak katarakt, glakom ve normal göz dibi görüntüleri sınıflandırılmıştır. Eğitilmiş Ağlar kullanılarak Googlenet, Densenet-201, Xception ve Inception-V3 ağlarının performansları karşılaştırılmıştır. Her ağ için adam, rmsprop ve sgdm optimizasyon yöntemleri uygulanmıştır. Bu çalışma, datasetteki 262 Katarakt, 200 Glakom ve 2816 normal göz dibi görüntüsü kullanılarak yapılmıştır. Görüntüler, yeniden boyutlandırma, arka planı kaldırma, rastgele döndürme ve yeniden boyutlandırma ile önceden işlenmiştir. Matlab ortamında yapılan simülasyonlar sonucunda, diğer ağlara göre en iyi sonuçlar rmsprop optimizasyonlu Xception ağ mimarisi ile elde edilmiştir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信