原子干涉暗物质探测中的时钟转换与布拉格衍射

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
Daniel Derr, E. Giese
{"title":"原子干涉暗物质探测中的时钟转换与布拉格衍射","authors":"Daniel Derr, E. Giese","doi":"10.1116/5.0176666","DOIUrl":null,"url":null,"abstract":"Atom interferometers with long baselines are envisioned to complement the ongoing search for dark matter. They rely on atomic manipulation based on internal (clock) transitions or state-preserving atomic diffraction. Principally, dark matter can act on the internal as well as the external degrees of freedom to both of which atom interferometers are susceptible. We, therefore, study in this contribution the effects of dark matter on the internal atomic structure and the atom's motion. In particular, we show that the atomic transition frequency depends on the mean coupling and the differential coupling of the involved states to dark matter, scaling with the unperturbed atomic transition frequency and the Compton frequency, respectively. The differential coupling is only of relevance when internal states change, which makes detectors, e.g., based on single-photon transitions sensitive to both coupling parameters. For sensors generated by state-preserving diffraction mechanisms like Bragg diffraction, the mean coupling modifies only the motion of the atom as the dominant contribution. Finally, we compare both effects observed in terrestrial dark-matter detectors.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":"24 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clock transitions versus Bragg diffraction in atom-interferometric dark-matter detection\",\"authors\":\"Daniel Derr, E. Giese\",\"doi\":\"10.1116/5.0176666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atom interferometers with long baselines are envisioned to complement the ongoing search for dark matter. They rely on atomic manipulation based on internal (clock) transitions or state-preserving atomic diffraction. Principally, dark matter can act on the internal as well as the external degrees of freedom to both of which atom interferometers are susceptible. We, therefore, study in this contribution the effects of dark matter on the internal atomic structure and the atom's motion. In particular, we show that the atomic transition frequency depends on the mean coupling and the differential coupling of the involved states to dark matter, scaling with the unperturbed atomic transition frequency and the Compton frequency, respectively. The differential coupling is only of relevance when internal states change, which makes detectors, e.g., based on single-photon transitions sensitive to both coupling parameters. For sensors generated by state-preserving diffraction mechanisms like Bragg diffraction, the mean coupling modifies only the motion of the atom as the dominant contribution. Finally, we compare both effects observed in terrestrial dark-matter detectors.\",\"PeriodicalId\":93525,\"journal\":{\"name\":\"AVS quantum science\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AVS quantum science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0176666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0176666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们设想用长基线原子干涉仪来补充正在进行的暗物质搜索。它们依赖于基于内部(时钟)跃迁或状态保留原子衍射的原子操纵。原则上,暗物质可以作用于内部和外部自由度,而原子干涉仪对这两种自由度都很敏感。因此,我们在这篇论文中研究了暗物质对原子内部结构和原子运动的影响。我们特别指出,原子跃迁频率取决于相关态与暗物质的平均耦合和差分耦合,分别与未受扰动的原子跃迁频率和康普顿频率成比例关系。只有当内部状态发生变化时,差分耦合才有意义,这使得探测器(例如基于单光子跃迁的探测器)对这两个耦合参数都很敏感。对于由布拉格衍射等保留状态的衍射机制产生的传感器,平均耦合只改变原子的运动,这是主要的贡献。最后,我们比较了在陆地暗物质探测器中观察到的两种效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clock transitions versus Bragg diffraction in atom-interferometric dark-matter detection
Atom interferometers with long baselines are envisioned to complement the ongoing search for dark matter. They rely on atomic manipulation based on internal (clock) transitions or state-preserving atomic diffraction. Principally, dark matter can act on the internal as well as the external degrees of freedom to both of which atom interferometers are susceptible. We, therefore, study in this contribution the effects of dark matter on the internal atomic structure and the atom's motion. In particular, we show that the atomic transition frequency depends on the mean coupling and the differential coupling of the involved states to dark matter, scaling with the unperturbed atomic transition frequency and the Compton frequency, respectively. The differential coupling is only of relevance when internal states change, which makes detectors, e.g., based on single-photon transitions sensitive to both coupling parameters. For sensors generated by state-preserving diffraction mechanisms like Bragg diffraction, the mean coupling modifies only the motion of the atom as the dominant contribution. Finally, we compare both effects observed in terrestrial dark-matter detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信