几何乘法微积分中的修正二次洛伦兹吸引器

Bugce EMİNAGA TATLİCİOGLU
{"title":"几何乘法微积分中的修正二次洛伦兹吸引器","authors":"Bugce EMİNAGA TATLİCİOGLU","doi":"10.47000/tjmcs.1249554","DOIUrl":null,"url":null,"abstract":"In this study the modified quadratic Lorenz attractor is introduced in geometric multiplicative calculus. The new system is analyzed and discussed for the chaotic behaviour in detail. The equilibria points, the eigenvalues of the multiplicative Jacobian, and the Lyapunov exponents are determined. The numerical simulations are conducted using the Runge-Kutta method in the framework of geometric multiplicative calculus highlighting the chaotic behaviour.","PeriodicalId":506513,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Quadratic Lorenz Attractor in Geometric Multiplicative Calculus\",\"authors\":\"Bugce EMİNAGA TATLİCİOGLU\",\"doi\":\"10.47000/tjmcs.1249554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study the modified quadratic Lorenz attractor is introduced in geometric multiplicative calculus. The new system is analyzed and discussed for the chaotic behaviour in detail. The equilibria points, the eigenvalues of the multiplicative Jacobian, and the Lyapunov exponents are determined. The numerical simulations are conducted using the Runge-Kutta method in the framework of geometric multiplicative calculus highlighting the chaotic behaviour.\",\"PeriodicalId\":506513,\"journal\":{\"name\":\"Turkish Journal of Mathematics and Computer Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47000/tjmcs.1249554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.1249554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究在几何乘法微积分中引入了修正的二次洛伦兹吸引子。对新系统的混沌行为进行了详细分析和讨论。确定了平衡点、乘法雅各布特征值和 Lyapunov 指数。在几何乘法微积分框架内使用 Runge-Kutta 方法进行了数值模拟,突出了混沌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Quadratic Lorenz Attractor in Geometric Multiplicative Calculus
In this study the modified quadratic Lorenz attractor is introduced in geometric multiplicative calculus. The new system is analyzed and discussed for the chaotic behaviour in detail. The equilibria points, the eigenvalues of the multiplicative Jacobian, and the Lyapunov exponents are determined. The numerical simulations are conducted using the Runge-Kutta method in the framework of geometric multiplicative calculus highlighting the chaotic behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信