{"title":"几何乘法微积分中的修正二次洛伦兹吸引器","authors":"Bugce EMİNAGA TATLİCİOGLU","doi":"10.47000/tjmcs.1249554","DOIUrl":null,"url":null,"abstract":"In this study the modified quadratic Lorenz attractor is introduced in geometric multiplicative calculus. The new system is analyzed and discussed for the chaotic behaviour in detail. The equilibria points, the eigenvalues of the multiplicative Jacobian, and the Lyapunov exponents are determined. The numerical simulations are conducted using the Runge-Kutta method in the framework of geometric multiplicative calculus highlighting the chaotic behaviour.","PeriodicalId":506513,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Quadratic Lorenz Attractor in Geometric Multiplicative Calculus\",\"authors\":\"Bugce EMİNAGA TATLİCİOGLU\",\"doi\":\"10.47000/tjmcs.1249554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study the modified quadratic Lorenz attractor is introduced in geometric multiplicative calculus. The new system is analyzed and discussed for the chaotic behaviour in detail. The equilibria points, the eigenvalues of the multiplicative Jacobian, and the Lyapunov exponents are determined. The numerical simulations are conducted using the Runge-Kutta method in the framework of geometric multiplicative calculus highlighting the chaotic behaviour.\",\"PeriodicalId\":506513,\"journal\":{\"name\":\"Turkish Journal of Mathematics and Computer Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47000/tjmcs.1249554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.1249554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Modified Quadratic Lorenz Attractor in Geometric Multiplicative Calculus
In this study the modified quadratic Lorenz attractor is introduced in geometric multiplicative calculus. The new system is analyzed and discussed for the chaotic behaviour in detail. The equilibria points, the eigenvalues of the multiplicative Jacobian, and the Lyapunov exponents are determined. The numerical simulations are conducted using the Runge-Kutta method in the framework of geometric multiplicative calculus highlighting the chaotic behaviour.