NID 空间中透气材料球壳的数学分析

Saeed Ahmed, Muhammad Akbar, Muhammad Imran Shahzad, Muhammad Ahmad Raza, Sania Shaheen
{"title":"NID 空间中透气材料球壳的数学分析","authors":"Saeed Ahmed, Muhammad Akbar, Muhammad Imran Shahzad, Muhammad Ahmad Raza, Sania Shaheen","doi":"10.53560/ppasa(60-3)663","DOIUrl":null,"url":null,"abstract":"In this paper, we have studied the magnetic shielding effect of a spherical shell analytically in fractional dimensional space (FDS). The Laplacian equation in fractional space predicts the complex phenomena of physics. This is a boundary value problem that has been solved by the separation variable method mathematically by taking low frequency w = 0. Electric potential is obtained in fractional dimensional space for the three regions, namely outside the spherical shell, between the shell and hollow sphere and inside the sphere. Also, the induced dipole moment has been derived. We obtain a general solution that reduces to the classical results by setting fractional parameter α = 3 which takes its value (2 < α ≤ 3).","PeriodicalId":509771,"journal":{"name":"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Analysis on Spherical Shell of Permeable Material in NID Space\",\"authors\":\"Saeed Ahmed, Muhammad Akbar, Muhammad Imran Shahzad, Muhammad Ahmad Raza, Sania Shaheen\",\"doi\":\"10.53560/ppasa(60-3)663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have studied the magnetic shielding effect of a spherical shell analytically in fractional dimensional space (FDS). The Laplacian equation in fractional space predicts the complex phenomena of physics. This is a boundary value problem that has been solved by the separation variable method mathematically by taking low frequency w = 0. Electric potential is obtained in fractional dimensional space for the three regions, namely outside the spherical shell, between the shell and hollow sphere and inside the sphere. Also, the induced dipole moment has been derived. We obtain a general solution that reduces to the classical results by setting fractional parameter α = 3 which takes its value (2 < α ≤ 3).\",\"PeriodicalId\":509771,\"journal\":{\"name\":\"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53560/ppasa(60-3)663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53560/ppasa(60-3)663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在分数维空间(FDS)中对球形外壳的磁屏蔽效应进行了分析研究。分数空间中的拉普拉斯方程预示着复杂的物理现象。这是一个边界值问题,通过低频 w = 0,用分离变量法在数学上解决了这个问题。在分数维空间中得到了球壳外部、球壳与空心球之间以及球壳内部三个区域的电动势。此外,还得出了感应偶极矩。通过设置分数参数 α = 3(取值为 2 < α ≤ 3),我们得到了与经典结果一致的一般解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Analysis on Spherical Shell of Permeable Material in NID Space
In this paper, we have studied the magnetic shielding effect of a spherical shell analytically in fractional dimensional space (FDS). The Laplacian equation in fractional space predicts the complex phenomena of physics. This is a boundary value problem that has been solved by the separation variable method mathematically by taking low frequency w = 0. Electric potential is obtained in fractional dimensional space for the three regions, namely outside the spherical shell, between the shell and hollow sphere and inside the sphere. Also, the induced dipole moment has been derived. We obtain a general solution that reduces to the classical results by setting fractional parameter α = 3 which takes its value (2 < α ≤ 3).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信