通过球面变换在椭球体中进行有效的四元数旋转:线性方法

Rundong Li, Muwen Chen
{"title":"通过球面变换在椭球体中进行有效的四元数旋转:线性方法","authors":"Rundong Li, Muwen Chen","doi":"10.56028/aetr.8.1.71.2023","DOIUrl":null,"url":null,"abstract":"The application of quaternion rotation in ellipsoids and spheres is an intriguing field with significant implications in computer graphics, robotics, and physics simulations. The necessity to decipher quaternion rotation in ellipsoid is crucial. This research aims to utilize the principles of quaternion rotation in spheres to compute the equivalent in the ellipsoid. This involves the application of a linear transformation to convert quaternion rotation in ellipsoids into spheres. By controlling the full rotation of quaternions, the spheres can be transformed back into ellipsoids, achieving the ultimate goal of controlling quaternion rotation within an ellipsoid. The results demonstrate that this approach effectively addresses the quaternion rotation on the ellipsoid and aligns with the fundamental properties of quaternions. Furthermore, it serves as a significant aid in implementing quaternion rotation on the ellipse.","PeriodicalId":502380,"journal":{"name":"Advances in Engineering Technology Research","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Quaternion Rotation in An Ellipsoid through Sphere Transformation: A Linear Approach\",\"authors\":\"Rundong Li, Muwen Chen\",\"doi\":\"10.56028/aetr.8.1.71.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of quaternion rotation in ellipsoids and spheres is an intriguing field with significant implications in computer graphics, robotics, and physics simulations. The necessity to decipher quaternion rotation in ellipsoid is crucial. This research aims to utilize the principles of quaternion rotation in spheres to compute the equivalent in the ellipsoid. This involves the application of a linear transformation to convert quaternion rotation in ellipsoids into spheres. By controlling the full rotation of quaternions, the spheres can be transformed back into ellipsoids, achieving the ultimate goal of controlling quaternion rotation within an ellipsoid. The results demonstrate that this approach effectively addresses the quaternion rotation on the ellipsoid and aligns with the fundamental properties of quaternions. Furthermore, it serves as a significant aid in implementing quaternion rotation on the ellipse.\",\"PeriodicalId\":502380,\"journal\":{\"name\":\"Advances in Engineering Technology Research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Technology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56028/aetr.8.1.71.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56028/aetr.8.1.71.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

四元数旋转在椭圆体和球体中的应用是一个引人入胜的领域,对计算机制图、机器人和物理模拟具有重要意义。破译椭球体中的四元数旋转至关重要。本研究旨在利用球体中的四元数旋转原理来计算椭球体中的等效旋转。这包括应用线性变换将椭球中的四元数旋转转换为球面中的四元数旋转。通过控制四元数的完全旋转,球体可以重新转化为椭球体,从而实现控制椭球体内四元数旋转的最终目标。结果表明,这种方法能有效解决椭球上的四元数旋转问题,并符合四元数的基本特性。此外,它还为在椭圆上实现四元数旋转提供了重要帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Quaternion Rotation in An Ellipsoid through Sphere Transformation: A Linear Approach
The application of quaternion rotation in ellipsoids and spheres is an intriguing field with significant implications in computer graphics, robotics, and physics simulations. The necessity to decipher quaternion rotation in ellipsoid is crucial. This research aims to utilize the principles of quaternion rotation in spheres to compute the equivalent in the ellipsoid. This involves the application of a linear transformation to convert quaternion rotation in ellipsoids into spheres. By controlling the full rotation of quaternions, the spheres can be transformed back into ellipsoids, achieving the ultimate goal of controlling quaternion rotation within an ellipsoid. The results demonstrate that this approach effectively addresses the quaternion rotation on the ellipsoid and aligns with the fundamental properties of quaternions. Furthermore, it serves as a significant aid in implementing quaternion rotation on the ellipse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信