用于柔性全固态超级电容器的 MXene 基电极合成的最新进展

Asieh Akhoondi, Mostafa Y. Nassar, Brian Yuliarto, Hicham Meskher
{"title":"用于柔性全固态超级电容器的 MXene 基电极合成的最新进展","authors":"Asieh Akhoondi, Mostafa Y. Nassar, Brian Yuliarto, Hicham Meskher","doi":"10.53063/synsint.2023.33163","DOIUrl":null,"url":null,"abstract":"Various energy storage sources have been developed so far, among which supercapacitors are more important for the forthcoming generations due to their small size and portability. Supercapacitors as good alternatives to batteries have recently attracted more attention because they have higher power and excellent charging-discharging rate which is considered as a challenging issue that limits the use of batteries. Supercapacitors also have other advantages over batteries, including higher reversibility and cycle life, lower maintenance costs, and safer electrode materials. MXenes have emerged as a new class of 2D composites in electrode materials for supercapacitors as low-cost and environment-friendly carbides and nitrides. MXenes are suitable inorganic compounds with excellent electrochemical properties and mechanical integrity to improve supercapacitor energy density at a new interval. This review presents new synthesis strategies to prevent the self-accumulation of MXene layers. First, the fundamental working theories of different supercapacitors are outlined. Next, an overview of the electrode material based on MXenes is outlined, and the latest solutions for increasing the active sites and improving the ion transfer rate have been collected. Hybridization and doping of MXenes change the properties of the composite, leading to a transformation in the structure and an increase in the capacitance. Furthermore, the utilization of double-transition metal MXenes solves challenges such as structural destruction and short life spans in multiple charge-discharge cycles. Then evaluation of the new MXene-based electrode materials in all-solid-state supercapacitors has been summarized. Finally, an overview of the latest developments in the creation of all-solid-state flexible supercapacitors as well as our predictions for future lines of inquiry is provided.","PeriodicalId":22113,"journal":{"name":"Synthesis and Sintering","volume":"184 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in synthesis of MXene-based electrodes for flexible all-solid-state supercapacitors\",\"authors\":\"Asieh Akhoondi, Mostafa Y. Nassar, Brian Yuliarto, Hicham Meskher\",\"doi\":\"10.53063/synsint.2023.33163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various energy storage sources have been developed so far, among which supercapacitors are more important for the forthcoming generations due to their small size and portability. Supercapacitors as good alternatives to batteries have recently attracted more attention because they have higher power and excellent charging-discharging rate which is considered as a challenging issue that limits the use of batteries. Supercapacitors also have other advantages over batteries, including higher reversibility and cycle life, lower maintenance costs, and safer electrode materials. MXenes have emerged as a new class of 2D composites in electrode materials for supercapacitors as low-cost and environment-friendly carbides and nitrides. MXenes are suitable inorganic compounds with excellent electrochemical properties and mechanical integrity to improve supercapacitor energy density at a new interval. This review presents new synthesis strategies to prevent the self-accumulation of MXene layers. First, the fundamental working theories of different supercapacitors are outlined. Next, an overview of the electrode material based on MXenes is outlined, and the latest solutions for increasing the active sites and improving the ion transfer rate have been collected. Hybridization and doping of MXenes change the properties of the composite, leading to a transformation in the structure and an increase in the capacitance. Furthermore, the utilization of double-transition metal MXenes solves challenges such as structural destruction and short life spans in multiple charge-discharge cycles. Then evaluation of the new MXene-based electrode materials in all-solid-state supercapacitors has been summarized. Finally, an overview of the latest developments in the creation of all-solid-state flexible supercapacitors as well as our predictions for future lines of inquiry is provided.\",\"PeriodicalId\":22113,\"journal\":{\"name\":\"Synthesis and Sintering\",\"volume\":\"184 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis and Sintering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53063/synsint.2023.33163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis and Sintering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53063/synsint.2023.33163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止,已开发出多种能源存储源,其中超级电容器因其体积小、便于携带,对下一代人来说更为重要。超级电容器作为电池的良好替代品,最近吸引了更多的关注,因为它们具有更高的功率和出色的充放电速率,这被认为是限制电池使用的一个挑战性问题。与电池相比,超级电容器还具有其他优势,包括更高的可逆性和循环寿命、更低的维护成本以及更安全的电极材料。二氧化二烯作为低成本、环保的碳化物和氮化物,已成为超级电容器电极材料中的一类新型二维复合材料。MXenes 是合适的无机化合物,具有优异的电化学性能和机械完整性,可在新的区间内提高超级电容器的能量密度。本综述介绍了防止 MXene 层自累积的新合成策略。首先,概述了不同超级电容器的基本工作理论。接着,概述了基于二氧化二烯的电极材料,并收集了增加活性位点和提高离子转移率的最新解决方案。二氧化二烯的杂化和掺杂改变了复合材料的特性,从而导致结构的转变和电容的增加。此外,双跃迁金属 MXenes 的使用解决了多次充放电循环中结构破坏和寿命短等难题。然后,总结了对全固态超级电容器中基于二氧化二烯的新型电极材料的评估。最后,综述了在制造全固态柔性超级电容器方面的最新进展,以及我们对未来研究方向的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in synthesis of MXene-based electrodes for flexible all-solid-state supercapacitors
Various energy storage sources have been developed so far, among which supercapacitors are more important for the forthcoming generations due to their small size and portability. Supercapacitors as good alternatives to batteries have recently attracted more attention because they have higher power and excellent charging-discharging rate which is considered as a challenging issue that limits the use of batteries. Supercapacitors also have other advantages over batteries, including higher reversibility and cycle life, lower maintenance costs, and safer electrode materials. MXenes have emerged as a new class of 2D composites in electrode materials for supercapacitors as low-cost and environment-friendly carbides and nitrides. MXenes are suitable inorganic compounds with excellent electrochemical properties and mechanical integrity to improve supercapacitor energy density at a new interval. This review presents new synthesis strategies to prevent the self-accumulation of MXene layers. First, the fundamental working theories of different supercapacitors are outlined. Next, an overview of the electrode material based on MXenes is outlined, and the latest solutions for increasing the active sites and improving the ion transfer rate have been collected. Hybridization and doping of MXenes change the properties of the composite, leading to a transformation in the structure and an increase in the capacitance. Furthermore, the utilization of double-transition metal MXenes solves challenges such as structural destruction and short life spans in multiple charge-discharge cycles. Then evaluation of the new MXene-based electrode materials in all-solid-state supercapacitors has been summarized. Finally, an overview of the latest developments in the creation of all-solid-state flexible supercapacitors as well as our predictions for future lines of inquiry is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信