{"title":"研究沥青在搅拌机中的发泡过程","authors":"A. Savichev, R. Sharapov, A. Agarkov","doi":"10.34031/2071-7318-2023-8-12-106-114","DOIUrl":null,"url":null,"abstract":"The article discusses the main ways to save material, labor and financial resources in the production of asphalt concrete mixtures. It has been shown that a promising way to save energy and reduce harmful effects on the environment is to reduce the temperature of the bitumen. A foam generator design has been proposed that allows efficient mixing of bitumen with the generated steam. To describe rheology, the article uses the Ostwald-de Waele power-law fluid model. An expression for the current function is obtained, which allows to find the characteristics of the flow of the carrier phase in the mixer, taking into account the geometric parameters of the mixer, such as the diameter and length of the pipe, the radius of the screw, and the flow parameters at the inlet to the mixer. It is shown that under the same flow conditions, in order to obtain the same flow rate in the case of a pseudoplastic fluid, it is necessary to apply a greater pressure gradient compared to a Newtonian fluid. Experimental studies are carried out on the developed laboratory installation, which make it possible to determine the rational design and technical parameters of the foamed bitumen installation, the parameters of which are changed during the experiment. A regression equation is obtained in coded form, expressing the dependence of the quality of adhesion of foamed bitumen to inert material depending on the design and technological parameters of the developed bitumen foaming device","PeriodicalId":9367,"journal":{"name":"Bulletin of Belgorod State Technological University named after. V. G. Shukhov","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY OF THE FOAMING PROCESS OF BITUMEN IN THE MIXER\",\"authors\":\"A. Savichev, R. Sharapov, A. Agarkov\",\"doi\":\"10.34031/2071-7318-2023-8-12-106-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article discusses the main ways to save material, labor and financial resources in the production of asphalt concrete mixtures. It has been shown that a promising way to save energy and reduce harmful effects on the environment is to reduce the temperature of the bitumen. A foam generator design has been proposed that allows efficient mixing of bitumen with the generated steam. To describe rheology, the article uses the Ostwald-de Waele power-law fluid model. An expression for the current function is obtained, which allows to find the characteristics of the flow of the carrier phase in the mixer, taking into account the geometric parameters of the mixer, such as the diameter and length of the pipe, the radius of the screw, and the flow parameters at the inlet to the mixer. It is shown that under the same flow conditions, in order to obtain the same flow rate in the case of a pseudoplastic fluid, it is necessary to apply a greater pressure gradient compared to a Newtonian fluid. Experimental studies are carried out on the developed laboratory installation, which make it possible to determine the rational design and technical parameters of the foamed bitumen installation, the parameters of which are changed during the experiment. A regression equation is obtained in coded form, expressing the dependence of the quality of adhesion of foamed bitumen to inert material depending on the design and technological parameters of the developed bitumen foaming device\",\"PeriodicalId\":9367,\"journal\":{\"name\":\"Bulletin of Belgorod State Technological University named after. V. G. Shukhov\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Belgorod State Technological University named after. V. G. Shukhov\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34031/2071-7318-2023-8-12-106-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Belgorod State Technological University named after. V. G. Shukhov","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34031/2071-7318-2023-8-12-106-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STUDY OF THE FOAMING PROCESS OF BITUMEN IN THE MIXER
The article discusses the main ways to save material, labor and financial resources in the production of asphalt concrete mixtures. It has been shown that a promising way to save energy and reduce harmful effects on the environment is to reduce the temperature of the bitumen. A foam generator design has been proposed that allows efficient mixing of bitumen with the generated steam. To describe rheology, the article uses the Ostwald-de Waele power-law fluid model. An expression for the current function is obtained, which allows to find the characteristics of the flow of the carrier phase in the mixer, taking into account the geometric parameters of the mixer, such as the diameter and length of the pipe, the radius of the screw, and the flow parameters at the inlet to the mixer. It is shown that under the same flow conditions, in order to obtain the same flow rate in the case of a pseudoplastic fluid, it is necessary to apply a greater pressure gradient compared to a Newtonian fluid. Experimental studies are carried out on the developed laboratory installation, which make it possible to determine the rational design and technical parameters of the foamed bitumen installation, the parameters of which are changed during the experiment. A regression equation is obtained in coded form, expressing the dependence of the quality of adhesion of foamed bitumen to inert material depending on the design and technological parameters of the developed bitumen foaming device