{"title":"长叶毛霉的次生代谢物--关于促进植物生长和对植物病原体进行生物防治的潜在化合物的综述","authors":"Priya Ramasamy, Balachandar Subbu, Prabhakaran Narayanasamy","doi":"10.3923/ajbs.2023.202.211","DOIUrl":null,"url":null,"abstract":"Indeed, a significant amount of agricultural production has been lost due to plant diseases that were caused by phytopathogens. Chemical pesticides are applied to protect the crops from the reduce substantial yield loss. Improved crop yields have been achieved for a long time through the use of synthetic chemical pesticides. However, the use of these pesticides may one day be limited due to their negative effects on human health and the environment. Global ecological awareness of the use of natural products and microorganisms to manage plant diseases has led to the use of beneficial antagonistic bacteria and fungi in different methods. Several microorganisms limit pathogen growth or indirectly increase plant-mediated resistance. Trichoderma is one of the most effective biological control agents for soil and foliar diseases. The Trichoderma spp., biocontrol potential depends on number of mechanisms such as antibiosis, mycoparasitism and the host induced systemic resistance. As typically recognised saprophytic fungi, Trichoderma species generate and exude a wide range of secondary metabolites into their environment while having little nutritional requirements. The non-ribosomal peptides (peptobiols, siderophores, gliotoxin and glovirin), polyketides, terpenes, pyrones and isocyanine are some of the Trichoderma spp., derived secondary metabolites. These metabolites are associated in different biological activities like biocontrol activities and or microbial intrractions. Since, it’s becoming more important to extract these molecules from safer, biodegradable antifungal solutions, which may be the next generation of biological pesticides, studies on Trichoderma’s antifungal active components are intensifying. This article is reviewed particularly about the major secondary metabolites that are produced by the beneficial fungus Trichoderma longibrachiatum and enhance the present knowledge on the potential compounds for plants.","PeriodicalId":8481,"journal":{"name":"Asian Journal of Biological Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trichoderma longibrachiatum’s Secondary Metabolite-A Review on Potential Compounds for Plant Growth and Biological Control for Plant Pathogens\",\"authors\":\"Priya Ramasamy, Balachandar Subbu, Prabhakaran Narayanasamy\",\"doi\":\"10.3923/ajbs.2023.202.211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indeed, a significant amount of agricultural production has been lost due to plant diseases that were caused by phytopathogens. Chemical pesticides are applied to protect the crops from the reduce substantial yield loss. Improved crop yields have been achieved for a long time through the use of synthetic chemical pesticides. However, the use of these pesticides may one day be limited due to their negative effects on human health and the environment. Global ecological awareness of the use of natural products and microorganisms to manage plant diseases has led to the use of beneficial antagonistic bacteria and fungi in different methods. Several microorganisms limit pathogen growth or indirectly increase plant-mediated resistance. Trichoderma is one of the most effective biological control agents for soil and foliar diseases. The Trichoderma spp., biocontrol potential depends on number of mechanisms such as antibiosis, mycoparasitism and the host induced systemic resistance. As typically recognised saprophytic fungi, Trichoderma species generate and exude a wide range of secondary metabolites into their environment while having little nutritional requirements. The non-ribosomal peptides (peptobiols, siderophores, gliotoxin and glovirin), polyketides, terpenes, pyrones and isocyanine are some of the Trichoderma spp., derived secondary metabolites. These metabolites are associated in different biological activities like biocontrol activities and or microbial intrractions. Since, it’s becoming more important to extract these molecules from safer, biodegradable antifungal solutions, which may be the next generation of biological pesticides, studies on Trichoderma’s antifungal active components are intensifying. This article is reviewed particularly about the major secondary metabolites that are produced by the beneficial fungus Trichoderma longibrachiatum and enhance the present knowledge on the potential compounds for plants.\",\"PeriodicalId\":8481,\"journal\":{\"name\":\"Asian Journal of Biological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Biological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3923/ajbs.2023.202.211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3923/ajbs.2023.202.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trichoderma longibrachiatum’s Secondary Metabolite-A Review on Potential Compounds for Plant Growth and Biological Control for Plant Pathogens
Indeed, a significant amount of agricultural production has been lost due to plant diseases that were caused by phytopathogens. Chemical pesticides are applied to protect the crops from the reduce substantial yield loss. Improved crop yields have been achieved for a long time through the use of synthetic chemical pesticides. However, the use of these pesticides may one day be limited due to their negative effects on human health and the environment. Global ecological awareness of the use of natural products and microorganisms to manage plant diseases has led to the use of beneficial antagonistic bacteria and fungi in different methods. Several microorganisms limit pathogen growth or indirectly increase plant-mediated resistance. Trichoderma is one of the most effective biological control agents for soil and foliar diseases. The Trichoderma spp., biocontrol potential depends on number of mechanisms such as antibiosis, mycoparasitism and the host induced systemic resistance. As typically recognised saprophytic fungi, Trichoderma species generate and exude a wide range of secondary metabolites into their environment while having little nutritional requirements. The non-ribosomal peptides (peptobiols, siderophores, gliotoxin and glovirin), polyketides, terpenes, pyrones and isocyanine are some of the Trichoderma spp., derived secondary metabolites. These metabolites are associated in different biological activities like biocontrol activities and or microbial intrractions. Since, it’s becoming more important to extract these molecules from safer, biodegradable antifungal solutions, which may be the next generation of biological pesticides, studies on Trichoderma’s antifungal active components are intensifying. This article is reviewed particularly about the major secondary metabolites that are produced by the beneficial fungus Trichoderma longibrachiatum and enhance the present knowledge on the potential compounds for plants.