{"title":"用于选择性降解 MMP-2 的 LYTACS 的计算设计与评估","authors":"Laura Márquez Cantudo, Cristina Valverde López-Gallego, Claire Coderch Boué, Beatriz Pascual-Teresa Fernández","doi":"10.53519/analesranf.2023.89.03.02","DOIUrl":null,"url":null,"abstract":"LYTACs (LYsosome TArgeting Chimeras) are a novel pharmacological strategy based on the targeted protein degradation of extracellular and transmembrane proteins. Their mechanism of action is based on the use of a membrane receptor to internalize a target protein and mediate its lysosomal degradation. To date, its development has been focused on the use of antibodies for target binding, which has certain disadvantages from the pharmacokinetic and synthetic point of view. The aim of this work is to design a LYTAC capable of inducing the selective degradation of MMP-2 (LYTAC-MMP2), a matrix metalloprotease that is overexpressed in many types of cancer. LYTAC-MMP2 consists of a cation-independent mannose-6-phosphate receptor (CI-MPR) ligand and a selective MMP-2 inhibitor developed by our research group. Computational methods of homology modelling, docking and molecular dynamics have been used to study the CI-MPR receptor and its internalization mechanism, as well as for the comparison of the dynamic behaviour in water of a CI-MPR ligand described in the literature and LYTAC-MMP2.","PeriodicalId":50795,"journal":{"name":"Anales De La Real Academia Nacional De Farmacia","volume":"235 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational design and evaluation of LYTACS for the selective degradation of MMP-2\",\"authors\":\"Laura Márquez Cantudo, Cristina Valverde López-Gallego, Claire Coderch Boué, Beatriz Pascual-Teresa Fernández\",\"doi\":\"10.53519/analesranf.2023.89.03.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LYTACs (LYsosome TArgeting Chimeras) are a novel pharmacological strategy based on the targeted protein degradation of extracellular and transmembrane proteins. Their mechanism of action is based on the use of a membrane receptor to internalize a target protein and mediate its lysosomal degradation. To date, its development has been focused on the use of antibodies for target binding, which has certain disadvantages from the pharmacokinetic and synthetic point of view. The aim of this work is to design a LYTAC capable of inducing the selective degradation of MMP-2 (LYTAC-MMP2), a matrix metalloprotease that is overexpressed in many types of cancer. LYTAC-MMP2 consists of a cation-independent mannose-6-phosphate receptor (CI-MPR) ligand and a selective MMP-2 inhibitor developed by our research group. Computational methods of homology modelling, docking and molecular dynamics have been used to study the CI-MPR receptor and its internalization mechanism, as well as for the comparison of the dynamic behaviour in water of a CI-MPR ligand described in the literature and LYTAC-MMP2.\",\"PeriodicalId\":50795,\"journal\":{\"name\":\"Anales De La Real Academia Nacional De Farmacia\",\"volume\":\"235 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anales De La Real Academia Nacional De Farmacia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53519/analesranf.2023.89.03.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anales De La Real Academia Nacional De Farmacia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53519/analesranf.2023.89.03.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Computational design and evaluation of LYTACS for the selective degradation of MMP-2
LYTACs (LYsosome TArgeting Chimeras) are a novel pharmacological strategy based on the targeted protein degradation of extracellular and transmembrane proteins. Their mechanism of action is based on the use of a membrane receptor to internalize a target protein and mediate its lysosomal degradation. To date, its development has been focused on the use of antibodies for target binding, which has certain disadvantages from the pharmacokinetic and synthetic point of view. The aim of this work is to design a LYTAC capable of inducing the selective degradation of MMP-2 (LYTAC-MMP2), a matrix metalloprotease that is overexpressed in many types of cancer. LYTAC-MMP2 consists of a cation-independent mannose-6-phosphate receptor (CI-MPR) ligand and a selective MMP-2 inhibitor developed by our research group. Computational methods of homology modelling, docking and molecular dynamics have been used to study the CI-MPR receptor and its internalization mechanism, as well as for the comparison of the dynamic behaviour in water of a CI-MPR ligand described in the literature and LYTAC-MMP2.
期刊介绍:
The Anales de la Real Academia Nacional de Farmacia� embraces all aspects of pharmaceutical sciences and is a quarterly journal that publishes basic and applied research on pharmaceutical sciences and related areas. It is a medium for reporting selected original and significant contributions to new pharmaceutical knowledge.