预测内陆淡水中有害蓝藻细胞及相关代谢物浓度的机器学习和深度学习建模趋势:算法、输入变量和学习数据数量的比较

Yongeun Park, Jin Hwi Kim, Han-Saeng Lee, Seohyun Byeon, Soon-Jin Hwang, Jae-Ki Shin
{"title":"预测内陆淡水中有害蓝藻细胞及相关代谢物浓度的机器学习和深度学习建模趋势:算法、输入变量和学习数据数量的比较","authors":"Yongeun Park, Jin Hwi Kim, Han-Saeng Lee, Seohyun Byeon, Soon-Jin Hwang, Jae-Ki Shin","doi":"10.11614/ksl.2023.56.3.268","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":448194,"journal":{"name":"Korean Journal of Ecology and Environment","volume":"218 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number\",\"authors\":\"Yongeun Park, Jin Hwi Kim, Han-Saeng Lee, Seohyun Byeon, Soon-Jin Hwang, Jae-Ki Shin\",\"doi\":\"10.11614/ksl.2023.56.3.268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":448194,\"journal\":{\"name\":\"Korean Journal of Ecology and Environment\",\"volume\":\"218 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Ecology and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11614/ksl.2023.56.3.268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Ecology and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11614/ksl.2023.56.3.268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信