Yongeun Park, Jin Hwi Kim, Han-Saeng Lee, Seohyun Byeon, Soon-Jin Hwang, Jae-Ki Shin
{"title":"预测内陆淡水中有害蓝藻细胞及相关代谢物浓度的机器学习和深度学习建模趋势:算法、输入变量和学习数据数量的比较","authors":"Yongeun Park, Jin Hwi Kim, Han-Saeng Lee, Seohyun Byeon, Soon-Jin Hwang, Jae-Ki Shin","doi":"10.11614/ksl.2023.56.3.268","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":448194,"journal":{"name":"Korean Journal of Ecology and Environment","volume":"218 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number\",\"authors\":\"Yongeun Park, Jin Hwi Kim, Han-Saeng Lee, Seohyun Byeon, Soon-Jin Hwang, Jae-Ki Shin\",\"doi\":\"10.11614/ksl.2023.56.3.268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":448194,\"journal\":{\"name\":\"Korean Journal of Ecology and Environment\",\"volume\":\"218 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Ecology and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11614/ksl.2023.56.3.268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Ecology and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11614/ksl.2023.56.3.268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number