在具有交集阵列 {mn - 1, (m - 1)(n + 1), n - m + 1; 1, 1, (m - 1)(n + 1)} 的小型距离不规则图上

IF 0.3 Q4 MATHEMATICS, APPLIED
A. Makhnev, M. P. Golubyatnikov
{"title":"在具有交集阵列 {mn - 1, (m - 1)(n + 1), n - m + 1; 1, 1, (m - 1)(n + 1)} 的小型距离不规则图上","authors":"A. Makhnev, M. P. Golubyatnikov","doi":"10.1515/dma-2023-0025","DOIUrl":null,"url":null,"abstract":"Abstract Let Γ be a diameter 3 distance-regular graph with a strongly regular graph Γ3, where Γ3 is the graph whose vertex set coincides with the vertex set of the graph Γ and two vertices are adjacent whenever they are at distance 3 in the graph Γ. Computing the parameters of Γ3 by the intersection array of the graph Γ is considered as the direct problem. Recovering the intersection array of the graph Γ by the parameters of Γ3 is referred to as the inverse problem. The inverse problem for Γ3 has been solved earlier by A. A. Makhnev and M. S. Nirova. In the case where Γ3 is a pseudo-geometric graph of a net, a series of admissible intersection arrays has been obtained: {c2(u2 − m2) + 2c2m − c2 − 1, c2(u2 − m2), (c2 − 1)(u2 − m2) + 2c2m − c2; 1, c2, u2 − m2} (A. A. Makhnev, Wenbin Guo, M. P. Golubyatnikov). The cases c2 = 1 and c2 = 2 have been examined by A. A. Makhnev, M. P. Golubyatnikov and A. A. Makhnev, M. S. Nirova, respectively. In this paper in the class of graphs with the intersection arrays {mn − 1, (m − 1)(n + 1)}, {n − m + 1}; 1, 1, (m − 1)(n + 1)} all admissible intersection arrays for {3 ≤ m ≤ 13} are found: {20,16,5; 1, 1,16}, {39,36,4; 1, 1,36}, {55,54,2; 1, 2,54}, {90,84,7; 1, 1,84}, {220,216,5; 1, 1,216}, {272,264,9; 1, 1,264} and {350,336,15; 1, 1,336}. It is demonstrated that graphs with the intersection arrays {20,16,5; 1, 1,16}, {39,36,4; 1, 1,36} and {90,84,7; 1, 1,84} do not exist.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On small distance-regular graphs with the intersection arrays {mn − 1, (m − 1)(n + 1), n − m + 1; 1, 1, (m − 1)(n + 1)}\",\"authors\":\"A. Makhnev, M. P. Golubyatnikov\",\"doi\":\"10.1515/dma-2023-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let Γ be a diameter 3 distance-regular graph with a strongly regular graph Γ3, where Γ3 is the graph whose vertex set coincides with the vertex set of the graph Γ and two vertices are adjacent whenever they are at distance 3 in the graph Γ. Computing the parameters of Γ3 by the intersection array of the graph Γ is considered as the direct problem. Recovering the intersection array of the graph Γ by the parameters of Γ3 is referred to as the inverse problem. The inverse problem for Γ3 has been solved earlier by A. A. Makhnev and M. S. Nirova. In the case where Γ3 is a pseudo-geometric graph of a net, a series of admissible intersection arrays has been obtained: {c2(u2 − m2) + 2c2m − c2 − 1, c2(u2 − m2), (c2 − 1)(u2 − m2) + 2c2m − c2; 1, c2, u2 − m2} (A. A. Makhnev, Wenbin Guo, M. P. Golubyatnikov). The cases c2 = 1 and c2 = 2 have been examined by A. A. Makhnev, M. P. Golubyatnikov and A. A. Makhnev, M. S. Nirova, respectively. In this paper in the class of graphs with the intersection arrays {mn − 1, (m − 1)(n + 1)}, {n − m + 1}; 1, 1, (m − 1)(n + 1)} all admissible intersection arrays for {3 ≤ m ≤ 13} are found: {20,16,5; 1, 1,16}, {39,36,4; 1, 1,36}, {55,54,2; 1, 2,54}, {90,84,7; 1, 1,84}, {220,216,5; 1, 1,216}, {272,264,9; 1, 1,264} and {350,336,15; 1, 1,336}. It is demonstrated that graphs with the intersection arrays {20,16,5; 1, 1,16}, {39,36,4; 1, 1,36} and {90,84,7; 1, 1,84} do not exist.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2023-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2023-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 假设Γ是一个直径为 3 的距离正则图,它有一个强正则图Γ3,其中Γ3 是顶点集与图Γ的顶点集重合的图,并且只要两个顶点在图Γ中的距离为 3,它们就是相邻的。通过图 Γ 的交点阵列计算 Γ3 的参数被视为直接问题。通过 Γ3 的参数恢复图 Γ 的交点阵列称为逆问题。A. A. Makhnev 和 M. S. Nirova 早先已经解决了 Γ3 的逆问题。在 Γ3 是一个网的伪几何图形的情况下,得到了一系列可接受的交点阵列:{c2(u2 - m2) + 2c2m - c2 - 1, c2(u2 - m2), (c2 - 1)(u2 - m2) + 2c2m - c2; 1, c2, u2 - m2} (A. A. Makhnev, Wenbin Guo, M. P. Golubyatnikov)。A. A. Makhnev, M. P. Golubyatnikov 和 A. A. Makhnev, M. S. Nirova 分别研究了 c2 = 1 和 c2 = 2 的情况。在本文中,在具有交集阵列 {mn - 1, (m - 1)(n + 1)}, {n - m + 1}; 1, 1, (m - 1)(n + 1)} 的一类图形中,发现了 {3 ≤ m ≤ 13} 的所有可容许交集阵列:{20,16,5; 1, 1,16}, {39,36,4; 1, 1,36}, {55,54,2; 1, 2,54}, {90,84,7; 1, 1,84}, {220,216,5; 1, 1,216}, {272,264,9; 1, 1,264} 和 {350,336,15; 1, 1,336}.事实证明,不存在交集数组为 {20,16,5; 1, 1,16}, {39,36,4; 1, 1,36} 和 {90,84,7; 1, 1,84} 的图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On small distance-regular graphs with the intersection arrays {mn − 1, (m − 1)(n + 1), n − m + 1; 1, 1, (m − 1)(n + 1)}
Abstract Let Γ be a diameter 3 distance-regular graph with a strongly regular graph Γ3, where Γ3 is the graph whose vertex set coincides with the vertex set of the graph Γ and two vertices are adjacent whenever they are at distance 3 in the graph Γ. Computing the parameters of Γ3 by the intersection array of the graph Γ is considered as the direct problem. Recovering the intersection array of the graph Γ by the parameters of Γ3 is referred to as the inverse problem. The inverse problem for Γ3 has been solved earlier by A. A. Makhnev and M. S. Nirova. In the case where Γ3 is a pseudo-geometric graph of a net, a series of admissible intersection arrays has been obtained: {c2(u2 − m2) + 2c2m − c2 − 1, c2(u2 − m2), (c2 − 1)(u2 − m2) + 2c2m − c2; 1, c2, u2 − m2} (A. A. Makhnev, Wenbin Guo, M. P. Golubyatnikov). The cases c2 = 1 and c2 = 2 have been examined by A. A. Makhnev, M. P. Golubyatnikov and A. A. Makhnev, M. S. Nirova, respectively. In this paper in the class of graphs with the intersection arrays {mn − 1, (m − 1)(n + 1)}, {n − m + 1}; 1, 1, (m − 1)(n + 1)} all admissible intersection arrays for {3 ≤ m ≤ 13} are found: {20,16,5; 1, 1,16}, {39,36,4; 1, 1,36}, {55,54,2; 1, 2,54}, {90,84,7; 1, 1,84}, {220,216,5; 1, 1,216}, {272,264,9; 1, 1,264} and {350,336,15; 1, 1,336}. It is demonstrated that graphs with the intersection arrays {20,16,5; 1, 1,16}, {39,36,4; 1, 1,36} and {90,84,7; 1, 1,84} do not exist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信