{"title":"作为药物载体的卵磷脂微乳液","authors":"N. M. Murashova","doi":"10.1134/S1061933X23600689","DOIUrl":null,"url":null,"abstract":"<p>The paper describes examples of microemulsions based on a well-known biocompatible surfactant, lecithin, and the possibilities of their use as drug carriers. The main problem encountered when developing lecithin microemulsions is the search for suitable cosurfactants. Molecules with short alkyl chains (4–5 C atoms) and relatively large polar “head,” such as short-chain aliphatic alcohols, acids, and amines are most suitable as cosurfactants for the preparation of lecithin microemulsions. Therewith, high concentrations of the cosurfactants (the cosurfactant : lecithin weight ratio usually is 1 : 1) are necessary. Most often, ethanol, <i>n</i>-propanol, or <i>n</i>-butanol are used as cosurfactants for the preparation of lecithin microemulsions in various natural and synthetic oils. To replace toxic alcohols with less toxic components, other well-known surfactants may be added to lecithin microemulsions. They are, e.g., Brij 96V (poly(ethylene glycol) oleate), Tween 80 (polyoxyethylene-20-sorbitan monooleate), Tween 20 (polyoxyethylene-20-sorbitan monolaurate). Triton X-100 (<i>tert</i>-octylphenyl ether of poly(ethylene glycol)) or oleic acid. Composites based on lecithin microemulsions have been described as means for local anesthesia and delivery of vitamins, as well as agents with anti-inflammatory, antifungal, anticancer, and wound healing effects. The considered examples show the promise of the study and development of lecithin microemulsions as drug carriers.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lecithin Microemulsions as Drug Carriers\",\"authors\":\"N. M. Murashova\",\"doi\":\"10.1134/S1061933X23600689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper describes examples of microemulsions based on a well-known biocompatible surfactant, lecithin, and the possibilities of their use as drug carriers. The main problem encountered when developing lecithin microemulsions is the search for suitable cosurfactants. Molecules with short alkyl chains (4–5 C atoms) and relatively large polar “head,” such as short-chain aliphatic alcohols, acids, and amines are most suitable as cosurfactants for the preparation of lecithin microemulsions. Therewith, high concentrations of the cosurfactants (the cosurfactant : lecithin weight ratio usually is 1 : 1) are necessary. Most often, ethanol, <i>n</i>-propanol, or <i>n</i>-butanol are used as cosurfactants for the preparation of lecithin microemulsions in various natural and synthetic oils. To replace toxic alcohols with less toxic components, other well-known surfactants may be added to lecithin microemulsions. They are, e.g., Brij 96V (poly(ethylene glycol) oleate), Tween 80 (polyoxyethylene-20-sorbitan monooleate), Tween 20 (polyoxyethylene-20-sorbitan monolaurate). Triton X-100 (<i>tert</i>-octylphenyl ether of poly(ethylene glycol)) or oleic acid. Composites based on lecithin microemulsions have been described as means for local anesthesia and delivery of vitamins, as well as agents with anti-inflammatory, antifungal, anticancer, and wound healing effects. The considered examples show the promise of the study and development of lecithin microemulsions as drug carriers.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X23600689\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23600689","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The paper describes examples of microemulsions based on a well-known biocompatible surfactant, lecithin, and the possibilities of their use as drug carriers. The main problem encountered when developing lecithin microemulsions is the search for suitable cosurfactants. Molecules with short alkyl chains (4–5 C atoms) and relatively large polar “head,” such as short-chain aliphatic alcohols, acids, and amines are most suitable as cosurfactants for the preparation of lecithin microemulsions. Therewith, high concentrations of the cosurfactants (the cosurfactant : lecithin weight ratio usually is 1 : 1) are necessary. Most often, ethanol, n-propanol, or n-butanol are used as cosurfactants for the preparation of lecithin microemulsions in various natural and synthetic oils. To replace toxic alcohols with less toxic components, other well-known surfactants may be added to lecithin microemulsions. They are, e.g., Brij 96V (poly(ethylene glycol) oleate), Tween 80 (polyoxyethylene-20-sorbitan monooleate), Tween 20 (polyoxyethylene-20-sorbitan monolaurate). Triton X-100 (tert-octylphenyl ether of poly(ethylene glycol)) or oleic acid. Composites based on lecithin microemulsions have been described as means for local anesthesia and delivery of vitamins, as well as agents with anti-inflammatory, antifungal, anticancer, and wound healing effects. The considered examples show the promise of the study and development of lecithin microemulsions as drug carriers.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.