采用卡塔尼奥-克里斯托夫热通量模型的非稳态伸缩旋转盘上磁流体和耗散混合卡松纳米流体流动的数值分析

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY
Ayele Tulu
{"title":"采用卡塔尼奥-克里斯托夫热通量模型的非稳态伸缩旋转盘上磁流体和耗散混合卡松纳米流体流动的数值分析","authors":"Ayele Tulu","doi":"10.1166/jon.2023.2059","DOIUrl":null,"url":null,"abstract":"The study scrutinized MHD and dissipated (SWCNTs-Fe3O4)/C2H6O2 hybrid Casson nanofluids flow over an unsteady stretchable rotating disk with a Cattaneo-Christov heat flux model. By means of proper similarity conversion, the boundary layer flow governing PDEs was changed into systems of dimensionless coupled nonlinear ordinary differential equations. Subsequently, the consequent nonlinear momentum and energy equations with their boundary conditions were worked out numerically employing the spectral quasilinearization method (SQLM). The convergence, stability, and accuracy of the SQLM were established as a computationally efficient method to solve a coupled system of boundary layer problems. It is specified that 5% of SWCNTs, 20% of Fe3O4, and 75% of C2H6O2 being taken for the preparation of (SWCNTs−Fe3O4)/C2H6O2 hybrid nanofluid with shape factor n1 = n2 = 3, and the values of the parameters used are fixed to M = 5, S = 0.5, β = 5, κ = 0.5, Ec = 2, Λ = 2, Pr = 7.3, α = 0.5, δ = 0. The effects of more perceptible parameters on velocity and thermal flow fields were considered and scrutinized carefully via graphs and tables. The results disclose that the momentum and thermal boundary layer thickness markedly declined with more value of the unsteady parameter. The local heat transfer rate improves nearly by 14% as 0.2 volume of Fe3O4 nanoparticles dispersed in 0.05 volume of SWCNTs and 0.75 volume of C2H6O2 nanofluid, hence, in realistic uses adding more values of nanoparticles in the hybrid nanofluids is useful to progress the heating process. The study is novel since to the best of the author’s knowledge, no paper has been published so far on the unsteady flow of (SWNT-Fe3O4)-Ethylene glycol hybrid Casson nanofluid with the effects of the Cattaneo-Christov heat flux model. As well, the model used for the thermophysical properties of the hybrid nanofluid is a new approach. Generally, hybrid nanofluids of (SWCNTs-Fe3O4)/C2H6O2 show better flow distributions with good stability of thermal properties than their mono counterparts.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis of Magnetohydrodynamic and Dissipated Hybrid Casson Nanofluid Flow Over an Unsteady Stretchable Rotating Disk with Cattaneo-Christov Heat Flux Model\",\"authors\":\"Ayele Tulu\",\"doi\":\"10.1166/jon.2023.2059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study scrutinized MHD and dissipated (SWCNTs-Fe3O4)/C2H6O2 hybrid Casson nanofluids flow over an unsteady stretchable rotating disk with a Cattaneo-Christov heat flux model. By means of proper similarity conversion, the boundary layer flow governing PDEs was changed into systems of dimensionless coupled nonlinear ordinary differential equations. Subsequently, the consequent nonlinear momentum and energy equations with their boundary conditions were worked out numerically employing the spectral quasilinearization method (SQLM). The convergence, stability, and accuracy of the SQLM were established as a computationally efficient method to solve a coupled system of boundary layer problems. It is specified that 5% of SWCNTs, 20% of Fe3O4, and 75% of C2H6O2 being taken for the preparation of (SWCNTs−Fe3O4)/C2H6O2 hybrid nanofluid with shape factor n1 = n2 = 3, and the values of the parameters used are fixed to M = 5, S = 0.5, β = 5, κ = 0.5, Ec = 2, Λ = 2, Pr = 7.3, α = 0.5, δ = 0. The effects of more perceptible parameters on velocity and thermal flow fields were considered and scrutinized carefully via graphs and tables. The results disclose that the momentum and thermal boundary layer thickness markedly declined with more value of the unsteady parameter. The local heat transfer rate improves nearly by 14% as 0.2 volume of Fe3O4 nanoparticles dispersed in 0.05 volume of SWCNTs and 0.75 volume of C2H6O2 nanofluid, hence, in realistic uses adding more values of nanoparticles in the hybrid nanofluids is useful to progress the heating process. The study is novel since to the best of the author’s knowledge, no paper has been published so far on the unsteady flow of (SWNT-Fe3O4)-Ethylene glycol hybrid Casson nanofluid with the effects of the Cattaneo-Christov heat flux model. As well, the model used for the thermophysical properties of the hybrid nanofluid is a new approach. Generally, hybrid nanofluids of (SWCNTs-Fe3O4)/C2H6O2 show better flow distributions with good stability of thermal properties than their mono counterparts.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.2059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

该研究采用 Cattaneo-Christov 热通量模型,仔细研究了流过非稳定可拉伸旋转圆盘的 MHD 和耗散 (SWCNTs-Fe3O4)/C2H6O2 混合 Casson 纳米流体。通过适当的相似性转换,边界层流动控制 PDEs 变为无量纲耦合非线性常微分方程系统。随后,利用谱准线性化方法(SQLM)对随之而来的非线性动量和能量方程及其边界条件进行了数值计算。结果表明,SQLM 是解决边界层耦合系统问题的一种计算高效的方法,其收敛性、稳定性和精确性均得到了证实。在制备形状系数 n1 = n2 = 3 的(SWCNTs-Fe3O4)/C2H6O2 混合纳米流体时,规定使用 5% 的 SWCNTs、20% 的 Fe3O4 和 75% 的 C2H6O2,使用的参数值固定为 M = 5、S = 0.考虑了更多可感知参数对速度和热流场的影响,并通过图表和表格进行了仔细研究。结果表明,随着非稳态参数值的增加,动量和热边界层厚度明显减小。当 0.2 体积的 Fe3O4 纳米粒子分散在 0.05 体积的 SWCNTs 和 0.75 体积的 C2H6O2 纳米流体中时,局部传热速率提高了近 14%。这项研究具有新颖性,因为就作者所知,迄今为止还没有发表过关于(SWNT-Fe3O4)-乙二醇混合卡松纳米流体的非稳态流动与 Cattaneo-Christov 热通量模型影响的论文。此外,混合纳米流体的热物理性质模型也是一种新方法。一般来说,(SWCNTs-Fe3O4)/C2H6O2 混合纳米流体比单一纳米流体具有更好的流动分布和良好的热物理性质稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Analysis of Magnetohydrodynamic and Dissipated Hybrid Casson Nanofluid Flow Over an Unsteady Stretchable Rotating Disk with Cattaneo-Christov Heat Flux Model
The study scrutinized MHD and dissipated (SWCNTs-Fe3O4)/C2H6O2 hybrid Casson nanofluids flow over an unsteady stretchable rotating disk with a Cattaneo-Christov heat flux model. By means of proper similarity conversion, the boundary layer flow governing PDEs was changed into systems of dimensionless coupled nonlinear ordinary differential equations. Subsequently, the consequent nonlinear momentum and energy equations with their boundary conditions were worked out numerically employing the spectral quasilinearization method (SQLM). The convergence, stability, and accuracy of the SQLM were established as a computationally efficient method to solve a coupled system of boundary layer problems. It is specified that 5% of SWCNTs, 20% of Fe3O4, and 75% of C2H6O2 being taken for the preparation of (SWCNTs−Fe3O4)/C2H6O2 hybrid nanofluid with shape factor n1 = n2 = 3, and the values of the parameters used are fixed to M = 5, S = 0.5, β = 5, κ = 0.5, Ec = 2, Λ = 2, Pr = 7.3, α = 0.5, δ = 0. The effects of more perceptible parameters on velocity and thermal flow fields were considered and scrutinized carefully via graphs and tables. The results disclose that the momentum and thermal boundary layer thickness markedly declined with more value of the unsteady parameter. The local heat transfer rate improves nearly by 14% as 0.2 volume of Fe3O4 nanoparticles dispersed in 0.05 volume of SWCNTs and 0.75 volume of C2H6O2 nanofluid, hence, in realistic uses adding more values of nanoparticles in the hybrid nanofluids is useful to progress the heating process. The study is novel since to the best of the author’s knowledge, no paper has been published so far on the unsteady flow of (SWNT-Fe3O4)-Ethylene glycol hybrid Casson nanofluid with the effects of the Cattaneo-Christov heat flux model. As well, the model used for the thermophysical properties of the hybrid nanofluid is a new approach. Generally, hybrid nanofluids of (SWCNTs-Fe3O4)/C2H6O2 show better flow distributions with good stability of thermal properties than their mono counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信