S. Grigoriev, M. P. Kozochkin, M. Volosova, A. Okunkova
{"title":"利用振动声发射诊断电极间隙的状况","authors":"S. Grigoriev, M. P. Kozochkin, M. Volosova, A. Okunkova","doi":"10.14489/td.2023.10.pp.022-027","DOIUrl":null,"url":null,"abstract":"This work is devoted to the study of the interelectrode gap’s condition during wire electrical discharge machining. The experiments were carried out on workpieces made of chromium-nickel anti-corrosion steel 12Kh18N10T and duralumin D16 with a brass tool CuZn35 with a diameter of 0.25 mm in deionized water. The developed diagnostic tool based on vibroacoustic emission recorded oscillations with a frequency of 4 … 8 kHz accompanying the processing.","PeriodicalId":432853,"journal":{"name":"Kontrol'. Diagnostika","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIAGNOSTICS OF INTERELECTRODE GAP’S CONDITION USING VIBROACOUSTIC EMISSION\",\"authors\":\"S. Grigoriev, M. P. Kozochkin, M. Volosova, A. Okunkova\",\"doi\":\"10.14489/td.2023.10.pp.022-027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the study of the interelectrode gap’s condition during wire electrical discharge machining. The experiments were carried out on workpieces made of chromium-nickel anti-corrosion steel 12Kh18N10T and duralumin D16 with a brass tool CuZn35 with a diameter of 0.25 mm in deionized water. The developed diagnostic tool based on vibroacoustic emission recorded oscillations with a frequency of 4 … 8 kHz accompanying the processing.\",\"PeriodicalId\":432853,\"journal\":{\"name\":\"Kontrol'. Diagnostika\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kontrol'. Diagnostika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14489/td.2023.10.pp.022-027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kontrol'. Diagnostika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14489/td.2023.10.pp.022-027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DIAGNOSTICS OF INTERELECTRODE GAP’S CONDITION USING VIBROACOUSTIC EMISSION
This work is devoted to the study of the interelectrode gap’s condition during wire electrical discharge machining. The experiments were carried out on workpieces made of chromium-nickel anti-corrosion steel 12Kh18N10T and duralumin D16 with a brass tool CuZn35 with a diameter of 0.25 mm in deionized water. The developed diagnostic tool based on vibroacoustic emission recorded oscillations with a frequency of 4 … 8 kHz accompanying the processing.