利用 PCA 和 HCA 技术对地下水质量的物理化学参数进行多元统计分析

Q3 Physics and Astronomy
A.J. Ferreira Gadelha, Clarice Oliveira da Rocha, José Germano Véras Neto, Mirelly Alexandre Gomes
{"title":"利用 PCA 和 HCA 技术对地下水质量的物理化学参数进行多元统计分析","authors":"A.J. Ferreira Gadelha, Clarice Oliveira da Rocha, José Germano Véras Neto, Mirelly Alexandre Gomes","doi":"10.26850/1678-4618eqj.v48.4.2023.p37-47","DOIUrl":null,"url":null,"abstract":"Multivariate analysis techniques are powerful tools in the study of groundwater quality, providing an expanded view of quality parameters. This work presents a multivariate analysis of groundwater quality in the city of Sousa, Paraíba state, through the techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA). Samples from 13 tubular wells were collected in different districts of the city of Sousa, during the rainy and dry seasons. For these samples, 11 parameters were analyzed: hydrogenic potential (pH), total dissolved solids, total alkalinity, carbonates, bicarbonates, total hardness, magnesium, calcium, sodium, potassium, and chlorides. PC1, PC2, PC3 and PC4 explain 87.48% of the total variance of the data. The PCA shows that there was a change in patterns between the analyzed periods. The correlation matrix corroborates the PCA data, showing the relationships between the physical-chemical variables evaluated. The HCA confirmed the correlations between the samples, making it possible to assess the degree of similarity between the composition of the wells and between the parameters evaluated.","PeriodicalId":35894,"journal":{"name":"Ecletica Quimica","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate statistical analysis of physicochemical parameters of groundwater quality using PCA and HCA techniques\",\"authors\":\"A.J. Ferreira Gadelha, Clarice Oliveira da Rocha, José Germano Véras Neto, Mirelly Alexandre Gomes\",\"doi\":\"10.26850/1678-4618eqj.v48.4.2023.p37-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate analysis techniques are powerful tools in the study of groundwater quality, providing an expanded view of quality parameters. This work presents a multivariate analysis of groundwater quality in the city of Sousa, Paraíba state, through the techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA). Samples from 13 tubular wells were collected in different districts of the city of Sousa, during the rainy and dry seasons. For these samples, 11 parameters were analyzed: hydrogenic potential (pH), total dissolved solids, total alkalinity, carbonates, bicarbonates, total hardness, magnesium, calcium, sodium, potassium, and chlorides. PC1, PC2, PC3 and PC4 explain 87.48% of the total variance of the data. The PCA shows that there was a change in patterns between the analyzed periods. The correlation matrix corroborates the PCA data, showing the relationships between the physical-chemical variables evaluated. The HCA confirmed the correlations between the samples, making it possible to assess the degree of similarity between the composition of the wells and between the parameters evaluated.\",\"PeriodicalId\":35894,\"journal\":{\"name\":\"Ecletica Quimica\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecletica Quimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26850/1678-4618eqj.v48.4.2023.p37-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecletica Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26850/1678-4618eqj.v48.4.2023.p37-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

多元分析技术是研究地下水水质的有力工具,可为水质参数提供更广阔的视角。本研究通过主成分分析(PCA)和层次聚类分析(HCA)技术,对帕拉伊巴州索萨市的地下水水质进行了多元分析。在雨季和旱季期间,从索萨市不同地区的 13 口管井中采集了样本。对这些样本进行了 11 项参数分析:氢电位(pH 值)、溶解固体总量、总碱度、碳酸盐、重碳酸盐、总硬度、镁、钙、钠、钾和氯化物。PC1、PC2、PC3 和 PC4 解释了数据总方差的 87.48%。PCA 显示,分析期间的模式发生了变化。相关矩阵证实了 PCA 数据,显示了所评估的物理化学变量之间的关系。HCA 证实了样本之间的相关性,从而可以评估水井组成和所评估参数之间的相似程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate statistical analysis of physicochemical parameters of groundwater quality using PCA and HCA techniques
Multivariate analysis techniques are powerful tools in the study of groundwater quality, providing an expanded view of quality parameters. This work presents a multivariate analysis of groundwater quality in the city of Sousa, Paraíba state, through the techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA). Samples from 13 tubular wells were collected in different districts of the city of Sousa, during the rainy and dry seasons. For these samples, 11 parameters were analyzed: hydrogenic potential (pH), total dissolved solids, total alkalinity, carbonates, bicarbonates, total hardness, magnesium, calcium, sodium, potassium, and chlorides. PC1, PC2, PC3 and PC4 explain 87.48% of the total variance of the data. The PCA shows that there was a change in patterns between the analyzed periods. The correlation matrix corroborates the PCA data, showing the relationships between the physical-chemical variables evaluated. The HCA confirmed the correlations between the samples, making it possible to assess the degree of similarity between the composition of the wells and between the parameters evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecletica Quimica
Ecletica Quimica Chemistry-Chemistry (all)
CiteScore
1.70
自引率
0.00%
发文量
32
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信