{"title":"纳米流体对热系统能效的影响:用热性能和流体力学性能标准评估实验数据","authors":"Murat Ünverdi̇, H. Küçük, M. Yilmaz","doi":"10.21597/jist.1303324","DOIUrl":null,"url":null,"abstract":"The energy efficiency of heat exchangers has become crucial in industrial applications due to ever-increasing energy costs. Therefore, various methods have been developed to enhance heat transfer and accelerate the process (shortening the time), reduce the size of heat exchangers, and increase energy (fuel) efficiency. In recent years, researchers have recommended nanofluid suspensions in place of common heat transfer fluids to improve energy efficiency. Nanofluid suspensions are obtained by adding nanometer-sized particles (less than 100 nm in at least one dimension) to heat transfer fluids. This study focused on experimental data in the literature to investigate the effects of nanofluids on transferred thermal power and required pumping power in heat exchangers. The relationship between the transferred thermal power and the pumping power was defined by two different performance criteria (Performance Evaluation Criterion-PEC and Energy Efficiency Criterion-EEC), allowing us to scrutinize the effects of nanofluids in thermal systems on energy efficiency (energy consumption) from a more realistic perspective. The results show that nanofluids are more disadvantageous than conventional heat transfer fluids in terms of the energy budget in industrial applications. It is concluded that nanofluids can be used in special applications where those disadvantages are insignificant.","PeriodicalId":17353,"journal":{"name":"Journal of the Institute of Science and Technology","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoakışkanların Isıl Sistemlerde Enerji Verimliliğine Etkisi: Deneysel Verilerin Isıl ve Hidrodinamik Performans Ölçütleri ile Değerlendirilmesi\",\"authors\":\"Murat Ünverdi̇, H. Küçük, M. Yilmaz\",\"doi\":\"10.21597/jist.1303324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy efficiency of heat exchangers has become crucial in industrial applications due to ever-increasing energy costs. Therefore, various methods have been developed to enhance heat transfer and accelerate the process (shortening the time), reduce the size of heat exchangers, and increase energy (fuel) efficiency. In recent years, researchers have recommended nanofluid suspensions in place of common heat transfer fluids to improve energy efficiency. Nanofluid suspensions are obtained by adding nanometer-sized particles (less than 100 nm in at least one dimension) to heat transfer fluids. This study focused on experimental data in the literature to investigate the effects of nanofluids on transferred thermal power and required pumping power in heat exchangers. The relationship between the transferred thermal power and the pumping power was defined by two different performance criteria (Performance Evaluation Criterion-PEC and Energy Efficiency Criterion-EEC), allowing us to scrutinize the effects of nanofluids in thermal systems on energy efficiency (energy consumption) from a more realistic perspective. The results show that nanofluids are more disadvantageous than conventional heat transfer fluids in terms of the energy budget in industrial applications. It is concluded that nanofluids can be used in special applications where those disadvantages are insignificant.\",\"PeriodicalId\":17353,\"journal\":{\"name\":\"Journal of the Institute of Science and Technology\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21597/jist.1303324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21597/jist.1303324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoakışkanların Isıl Sistemlerde Enerji Verimliliğine Etkisi: Deneysel Verilerin Isıl ve Hidrodinamik Performans Ölçütleri ile Değerlendirilmesi
The energy efficiency of heat exchangers has become crucial in industrial applications due to ever-increasing energy costs. Therefore, various methods have been developed to enhance heat transfer and accelerate the process (shortening the time), reduce the size of heat exchangers, and increase energy (fuel) efficiency. In recent years, researchers have recommended nanofluid suspensions in place of common heat transfer fluids to improve energy efficiency. Nanofluid suspensions are obtained by adding nanometer-sized particles (less than 100 nm in at least one dimension) to heat transfer fluids. This study focused on experimental data in the literature to investigate the effects of nanofluids on transferred thermal power and required pumping power in heat exchangers. The relationship between the transferred thermal power and the pumping power was defined by two different performance criteria (Performance Evaluation Criterion-PEC and Energy Efficiency Criterion-EEC), allowing us to scrutinize the effects of nanofluids in thermal systems on energy efficiency (energy consumption) from a more realistic perspective. The results show that nanofluids are more disadvantageous than conventional heat transfer fluids in terms of the energy budget in industrial applications. It is concluded that nanofluids can be used in special applications where those disadvantages are insignificant.