利用 K 近邻法将野生植物叶片归类为药用植物

Z. E. Fitri, Lalitya Nindita Sahenda, Sulton Mubarok, Abdul Madjid, A. M. N. Imron
{"title":"利用 K 近邻法将野生植物叶片归类为药用植物","authors":"Z. E. Fitri, Lalitya Nindita Sahenda, Sulton Mubarok, Abdul Madjid, A. M. N. Imron","doi":"10.30812/matrik.v23i1.2220","DOIUrl":null,"url":null,"abstract":"in leaf shape. Therefore, this study aimed to create a system to help increase public knowledge about wild plant leaves that also function as medicinal plants by the KNN method. Leaves of wild plants, namely Rumput Minjangan, Sambung Rambat, Rambusa, Brotowali, and Zehneria japonica, are also medicinal plants in comparison. Image processing  techniques used were preprocessing, image segmentation, and morphological feature extraction. Preprocessing consists of scaling and splitting the RGB components and using an RGB component decomposition process to find the color component that best describes the leaf shape and generate the blue component image. The segmentation process used a thresholding technique with a gray threshold value (T) of less than 150, which best separates objects and backgrounds. Some morphological feature extraction used are area, perimeter, metric, eccentricity, and aspect ratio. Based on the results of this research, the KNN method with variations in K values, namely 13, 15, and 17, obtained a system accuracy of 94.44% with a total of 90% training data and 10% test data. This comparison also affected the increase in system accuracy.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants\",\"authors\":\"Z. E. Fitri, Lalitya Nindita Sahenda, Sulton Mubarok, Abdul Madjid, A. M. N. Imron\",\"doi\":\"10.30812/matrik.v23i1.2220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"in leaf shape. Therefore, this study aimed to create a system to help increase public knowledge about wild plant leaves that also function as medicinal plants by the KNN method. Leaves of wild plants, namely Rumput Minjangan, Sambung Rambat, Rambusa, Brotowali, and Zehneria japonica, are also medicinal plants in comparison. Image processing  techniques used were preprocessing, image segmentation, and morphological feature extraction. Preprocessing consists of scaling and splitting the RGB components and using an RGB component decomposition process to find the color component that best describes the leaf shape and generate the blue component image. The segmentation process used a thresholding technique with a gray threshold value (T) of less than 150, which best separates objects and backgrounds. Some morphological feature extraction used are area, perimeter, metric, eccentricity, and aspect ratio. Based on the results of this research, the KNN method with variations in K values, namely 13, 15, and 17, obtained a system accuracy of 94.44% with a total of 90% training data and 10% test data. This comparison also affected the increase in system accuracy.\",\"PeriodicalId\":364657,\"journal\":{\"name\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30812/matrik.v23i1.2220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v23i1.2220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

叶形。因此,本研究旨在通过 KNN 方法创建一个系统,帮助公众增加对野生植物叶片的了解,这些叶片也可作为药用植物。比较野生植物的叶子,即 Rumput Minjangan、Sambung Rambat、Rambusa、Brotowali 和 Zehneria japonica,它们也是药用植物。使用的图像处理技术包括预处理、图像分割和形态特征提取。预处理包括缩放和分割 RGB 分量,并使用 RGB 分量分解过程找到最能描述叶片形状的颜色分量,生成蓝色分量图像。分割过程使用阈值技术,灰度阈值 (T) 小于 150,这样能最好地分离物体和背景。使用的形态特征提取包括面积、周长、度量、偏心率和长宽比。根据这项研究的结果,KNN 方法的 K 值变化(即 13、15 和 17)在总共 90% 的训练数据和 10% 的测试数据的情况下,获得了 94.44% 的系统准确率。这种比较也影响了系统准确率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing K-Nearest Neighbor to Classify Wild Plant Leaf as a Medicinal Plants
in leaf shape. Therefore, this study aimed to create a system to help increase public knowledge about wild plant leaves that also function as medicinal plants by the KNN method. Leaves of wild plants, namely Rumput Minjangan, Sambung Rambat, Rambusa, Brotowali, and Zehneria japonica, are also medicinal plants in comparison. Image processing  techniques used were preprocessing, image segmentation, and morphological feature extraction. Preprocessing consists of scaling and splitting the RGB components and using an RGB component decomposition process to find the color component that best describes the leaf shape and generate the blue component image. The segmentation process used a thresholding technique with a gray threshold value (T) of less than 150, which best separates objects and backgrounds. Some morphological feature extraction used are area, perimeter, metric, eccentricity, and aspect ratio. Based on the results of this research, the KNN method with variations in K values, namely 13, 15, and 17, obtained a system accuracy of 94.44% with a total of 90% training data and 10% test data. This comparison also affected the increase in system accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信