具有外部势能的 NLS 的快速孤子传输

IF 1.1 3区 数学 Q1 MATHEMATICS
Christopher C. Hogan, Jason Murphy
{"title":"具有外部势能的 NLS 的快速孤子传输","authors":"Christopher C. Hogan, Jason Murphy","doi":"10.3934/dcds.2023142","DOIUrl":null,"url":null,"abstract":"We consider the dynamics of a boosted soliton evolving under the cubic NLS with an external potential. We show that for sufficiently large velocities, the soliton is effectively transmitted through the potential. This result extends work of Holmer, Marzuola, and Zworski, who considered the case of a delta potential with no bound states, and work of Datchev and Holmer, who considered the case of a delta potential with a linear bound state.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"102 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmission of fast solitons for the NLS with an external potential\",\"authors\":\"Christopher C. Hogan, Jason Murphy\",\"doi\":\"10.3934/dcds.2023142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the dynamics of a boosted soliton evolving under the cubic NLS with an external potential. We show that for sufficiently large velocities, the soliton is effectively transmitted through the potential. This result extends work of Holmer, Marzuola, and Zworski, who considered the case of a delta potential with no bound states, and work of Datchev and Holmer, who considered the case of a delta potential with a linear bound state.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023142\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023142","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在带有外部势能的立方 NLS 下演化的助长孤子的动力学。我们的研究表明,在速度足够大的情况下,孤子可以有效地穿过势。这一结果扩展了 Holmer、Marzuola 和 Zworski 的研究,后者考虑的是没有束缚态的三角势的情况,而 Datchev 和 Holmer 则考虑了有线性束缚态的三角势的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transmission of fast solitons for the NLS with an external potential
We consider the dynamics of a boosted soliton evolving under the cubic NLS with an external potential. We show that for sufficiently large velocities, the soliton is effectively transmitted through the potential. This result extends work of Holmer, Marzuola, and Zworski, who considered the case of a delta potential with no bound states, and work of Datchev and Holmer, who considered the case of a delta potential with a linear bound state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信