{"title":"具有螺旋缠绕抓取功能的仿生连续机器人的设计与分析","authors":"Xiong Jiang, Shouzhong Li, Chong Ma, Xinyu Kuang, Wenlong Zhang, Hongzhe Zhao","doi":"10.1115/1.4063738","DOIUrl":null,"url":null,"abstract":"In the direction of grasping application, continuum robots are characterized by flexible grasping and high adaptability. Based on research on the physiological structure and winding method of seahorses, a continuum robot with a helical winding grasping function is presented in this paper. The continuum robot is driven by cables and uses a new flexural pivot with large deformation as a rotation joint. Firstly, based on the Serret-Frenet frame of the spatial cylindrical helix, the helical winding continuum robot is modeled and solved. The change rules of parameters such as the rotation angle of the joint and the helix parameters under the helical winding method are derived. Then, the compliance matrix of the joint is solved using the structural matrix method, and a stiffness model is established to analyze the relationship between the load and deformation of the continuum robot. The kinematics model of the continuum robot is established by using the modified DH parameter method. The static model of the continuum robot is solved by vector analysis under the condition of considering gravity, and the relationship between length change of cables and joint curvature is obtained. According to the principle of static equilibrium, the relationship between friction factor and maximum bearing capacity is established. Finally, the stiffness model and static model of the continuum robot are verified by simulations and experiments. The test results show that within a certain radial range, the continuum robot has the function of helical winding and grasping for objects.","PeriodicalId":508172,"journal":{"name":"Journal of Mechanisms and Robotics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Bionic Continuum Robot with Helical Winding Grasping Function\",\"authors\":\"Xiong Jiang, Shouzhong Li, Chong Ma, Xinyu Kuang, Wenlong Zhang, Hongzhe Zhao\",\"doi\":\"10.1115/1.4063738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the direction of grasping application, continuum robots are characterized by flexible grasping and high adaptability. Based on research on the physiological structure and winding method of seahorses, a continuum robot with a helical winding grasping function is presented in this paper. The continuum robot is driven by cables and uses a new flexural pivot with large deformation as a rotation joint. Firstly, based on the Serret-Frenet frame of the spatial cylindrical helix, the helical winding continuum robot is modeled and solved. The change rules of parameters such as the rotation angle of the joint and the helix parameters under the helical winding method are derived. Then, the compliance matrix of the joint is solved using the structural matrix method, and a stiffness model is established to analyze the relationship between the load and deformation of the continuum robot. The kinematics model of the continuum robot is established by using the modified DH parameter method. The static model of the continuum robot is solved by vector analysis under the condition of considering gravity, and the relationship between length change of cables and joint curvature is obtained. According to the principle of static equilibrium, the relationship between friction factor and maximum bearing capacity is established. Finally, the stiffness model and static model of the continuum robot are verified by simulations and experiments. The test results show that within a certain radial range, the continuum robot has the function of helical winding and grasping for objects.\",\"PeriodicalId\":508172,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of Bionic Continuum Robot with Helical Winding Grasping Function
In the direction of grasping application, continuum robots are characterized by flexible grasping and high adaptability. Based on research on the physiological structure and winding method of seahorses, a continuum robot with a helical winding grasping function is presented in this paper. The continuum robot is driven by cables and uses a new flexural pivot with large deformation as a rotation joint. Firstly, based on the Serret-Frenet frame of the spatial cylindrical helix, the helical winding continuum robot is modeled and solved. The change rules of parameters such as the rotation angle of the joint and the helix parameters under the helical winding method are derived. Then, the compliance matrix of the joint is solved using the structural matrix method, and a stiffness model is established to analyze the relationship between the load and deformation of the continuum robot. The kinematics model of the continuum robot is established by using the modified DH parameter method. The static model of the continuum robot is solved by vector analysis under the condition of considering gravity, and the relationship between length change of cables and joint curvature is obtained. According to the principle of static equilibrium, the relationship between friction factor and maximum bearing capacity is established. Finally, the stiffness model and static model of the continuum robot are verified by simulations and experiments. The test results show that within a certain radial range, the continuum robot has the function of helical winding and grasping for objects.