神经打包:从视觉传感到强化学习

Juzhan Xu, Minglun Gong, Hao Zhang, Hui Huang, Ruizhen Hu
{"title":"神经打包:从视觉传感到强化学习","authors":"Juzhan Xu, Minglun Gong, Hao Zhang, Hui Huang, Ruizhen Hu","doi":"10.1145/3618354","DOIUrl":null,"url":null,"abstract":"We present a novel learning framework to solve the transport-and-packing (TAP) problem in 3D. It constitutes a full solution pipeline from partial observations of input objects via RGBD sensing and recognition to final box placement, via robotic motion planning, to arrive at a compact packing in a target container. The technical core of our method is a neural network for TAP, trained via reinforcement learning (RL), to solve the NP-hard combinatorial optimization problem. Our network simultaneously selects an object to pack and determines the final packing location, based on a judicious encoding of the continuously evolving states of partially observed source objects and available spaces in the target container, using separate encoders both enabled with attention mechanisms. The encoded feature vectors are employed to compute the matching scores and feasibility masks of different pairings of box selection and available space configuration for packing strategy optimization. Extensive experiments, including ablation studies and physical packing execution by a real robot (Universal Robot UR5e), are conducted to evaluate our method in terms of its design choices, scalability, generalizability, and comparisons to baselines, including the most recent RL-based TAP solution. We also contribute the first benchmark for TAP which covers a variety of input settings and difficulty levels.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Packing: from Visual Sensing to Reinforcement Learning\",\"authors\":\"Juzhan Xu, Minglun Gong, Hao Zhang, Hui Huang, Ruizhen Hu\",\"doi\":\"10.1145/3618354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel learning framework to solve the transport-and-packing (TAP) problem in 3D. It constitutes a full solution pipeline from partial observations of input objects via RGBD sensing and recognition to final box placement, via robotic motion planning, to arrive at a compact packing in a target container. The technical core of our method is a neural network for TAP, trained via reinforcement learning (RL), to solve the NP-hard combinatorial optimization problem. Our network simultaneously selects an object to pack and determines the final packing location, based on a judicious encoding of the continuously evolving states of partially observed source objects and available spaces in the target container, using separate encoders both enabled with attention mechanisms. The encoded feature vectors are employed to compute the matching scores and feasibility masks of different pairings of box selection and available space configuration for packing strategy optimization. Extensive experiments, including ablation studies and physical packing execution by a real robot (Universal Robot UR5e), are conducted to evaluate our method in terms of its design choices, scalability, generalizability, and comparisons to baselines, including the most recent RL-based TAP solution. We also contribute the first benchmark for TAP which covers a variety of input settings and difficulty levels.\",\"PeriodicalId\":7077,\"journal\":{\"name\":\"ACM Transactions on Graphics (TOG)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics (TOG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3618354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3618354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的学习框架,用于解决三维运输和包装(TAP)问题。它构成了一个完整的解决方案流水线,从通过 RGBD 感测和识别对输入对象进行部分观测,到通过机器人运动规划进行最终的箱子放置,最终实现目标集装箱内的紧凑包装。我们方法的技术核心是通过强化学习(RL)训练的 TAP 神经网络,以解决 NP 难度的组合优化问题。我们的网络同时选择要打包的对象并确定最终的打包位置,其依据是对部分观察到的源对象和目标容器中可用空间的不断变化的状态进行明智的编码。编码后的特征向量可用于计算不同箱体选择和可用空间配置配对的匹配分数和可行性掩码,以优化打包策略。我们进行了广泛的实验,包括烧蚀研究和由真实机器人(通用机器人 UR5e)执行的物理打包,以评估我们的方法在设计选择、可扩展性、通用性以及与基线(包括最新的基于 RL 的 TAP 解决方案)的比较方面的效果。我们还为 TAP 提供了首个基准,涵盖了各种输入设置和难度级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Packing: from Visual Sensing to Reinforcement Learning
We present a novel learning framework to solve the transport-and-packing (TAP) problem in 3D. It constitutes a full solution pipeline from partial observations of input objects via RGBD sensing and recognition to final box placement, via robotic motion planning, to arrive at a compact packing in a target container. The technical core of our method is a neural network for TAP, trained via reinforcement learning (RL), to solve the NP-hard combinatorial optimization problem. Our network simultaneously selects an object to pack and determines the final packing location, based on a judicious encoding of the continuously evolving states of partially observed source objects and available spaces in the target container, using separate encoders both enabled with attention mechanisms. The encoded feature vectors are employed to compute the matching scores and feasibility masks of different pairings of box selection and available space configuration for packing strategy optimization. Extensive experiments, including ablation studies and physical packing execution by a real robot (Universal Robot UR5e), are conducted to evaluate our method in terms of its design choices, scalability, generalizability, and comparisons to baselines, including the most recent RL-based TAP solution. We also contribute the first benchmark for TAP which covers a variety of input settings and difficulty levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信