{"title":"作为唯一因式分解模块的强分级模块和正分级模块","authors":"Iwan Ernanto, Indah E. Wijayanti, Akira Ueda","doi":"10.24330/ieja.1404435","DOIUrl":null,"url":null,"abstract":"Let $M=\\oplus_{n\\in \\mathbb{Z}}M_{n}$ be a strongly graded module over strongly graded ring $D=\\oplus_{n\\in \\mathbb{Z}} D_{n}$. In this paper, we prove that if $M_{0}$ is a unique factorization module (UFM for short) over $D_{0}$ and $D$ is a unique factorization domain (UFD for short), then $M$ is a UFM over $D$. Furthermore, if $D_{0}$ is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\\oplus_{n\\in \\mathbb{Z}_{0}}M_{n}$ to be a UFM over positively graded domain $R=\\oplus_{n\\in \\mathbb{Z}_{0}}D_{n}$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules\",\"authors\":\"Iwan Ernanto, Indah E. Wijayanti, Akira Ueda\",\"doi\":\"10.24330/ieja.1404435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M=\\\\oplus_{n\\\\in \\\\mathbb{Z}}M_{n}$ be a strongly graded module over strongly graded ring $D=\\\\oplus_{n\\\\in \\\\mathbb{Z}} D_{n}$. In this paper, we prove that if $M_{0}$ is a unique factorization module (UFM for short) over $D_{0}$ and $D$ is a unique factorization domain (UFD for short), then $M$ is a UFM over $D$. Furthermore, if $D_{0}$ is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\\\\oplus_{n\\\\in \\\\mathbb{Z}_{0}}M_{n}$ to be a UFM over positively graded domain $R=\\\\oplus_{n\\\\in \\\\mathbb{Z}_{0}}D_{n}$.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1404435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1404435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules
Let $M=\oplus_{n\in \mathbb{Z}}M_{n}$ be a strongly graded module over strongly graded ring $D=\oplus_{n\in \mathbb{Z}} D_{n}$. In this paper, we prove that if $M_{0}$ is a unique factorization module (UFM for short) over $D_{0}$ and $D$ is a unique factorization domain (UFD for short), then $M$ is a UFM over $D$. Furthermore, if $D_{0}$ is a Noetherian domain, we give a necessary and sufficient condition for a positively graded module $L=\oplus_{n\in \mathbb{Z}_{0}}M_{n}$ to be a UFM over positively graded domain $R=\oplus_{n\in \mathbb{Z}_{0}}D_{n}$.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.