常微分方程近似解的分析算法综述

{"title":"常微分方程近似解的分析算法综述","authors":"","doi":"10.33140/jmtcm.02.10.03","DOIUrl":null,"url":null,"abstract":"This review article aims to provide an in-depth analysis of a wide range of analytical methods used for solving ordinary differential equations (ODEs). ODEs are fundamental in numerous scientific and engineering disciplines, making the development, and understanding of effective solution techniques crucial. We explore various approaches, including the Adomian decomposition method, homotopy perturbation method, homotopy analysis method, variational iteration method, Daftardar-Jafari method, successive approximation method, power series method, and modified Adomian decomposition method. Each method is discussed in terms of its principles, applications, advantages, limitations, and computational considerations. This comprehensive overview will serve as a valuable resource for researchers, practitioners, and students interested in solving ODEs.","PeriodicalId":437292,"journal":{"name":"Journal of Mathematical Techniques and Computational Mathematics","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Analytical Algorithms for Approximate Solutions of Ordinary Differential Equation\",\"authors\":\"\",\"doi\":\"10.33140/jmtcm.02.10.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review article aims to provide an in-depth analysis of a wide range of analytical methods used for solving ordinary differential equations (ODEs). ODEs are fundamental in numerous scientific and engineering disciplines, making the development, and understanding of effective solution techniques crucial. We explore various approaches, including the Adomian decomposition method, homotopy perturbation method, homotopy analysis method, variational iteration method, Daftardar-Jafari method, successive approximation method, power series method, and modified Adomian decomposition method. Each method is discussed in terms of its principles, applications, advantages, limitations, and computational considerations. This comprehensive overview will serve as a valuable resource for researchers, practitioners, and students interested in solving ODEs.\",\"PeriodicalId\":437292,\"journal\":{\"name\":\"Journal of Mathematical Techniques and Computational Mathematics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Techniques and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/jmtcm.02.10.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Techniques and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/jmtcm.02.10.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述文章旨在深入分析用于求解常微分方程(ODE)的各种分析方法。常微分方程是众多科学和工程学科的基础,因此开发和理解有效的求解技术至关重要。我们探讨了各种方法,包括阿多米分解法、同调扰动法、同调分析法、变式迭代法、Daftardar-Jafari 法、逐次逼近法、幂级数法和修正阿多米分解法。每种方法都从原理、应用、优势、局限性和计算注意事项等方面进行了讨论。这本全面的综述将成为对求解 ODEs 有兴趣的研究人员、从业人员和学生的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of Analytical Algorithms for Approximate Solutions of Ordinary Differential Equation
This review article aims to provide an in-depth analysis of a wide range of analytical methods used for solving ordinary differential equations (ODEs). ODEs are fundamental in numerous scientific and engineering disciplines, making the development, and understanding of effective solution techniques crucial. We explore various approaches, including the Adomian decomposition method, homotopy perturbation method, homotopy analysis method, variational iteration method, Daftardar-Jafari method, successive approximation method, power series method, and modified Adomian decomposition method. Each method is discussed in terms of its principles, applications, advantages, limitations, and computational considerations. This comprehensive overview will serve as a valuable resource for researchers, practitioners, and students interested in solving ODEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信