海森堡群上临界乔卡方程的高扰动和低扰动

IF 1.5 3区 数学 Q1 MATHEMATICS
Shujie Bai, Yueqiang Song, Duvsan D. Repovvs
{"title":"海森堡群上临界乔卡方程的高扰动和低扰动","authors":"Shujie Bai, Yueqiang Song, Duvsan D. Repovvs","doi":"10.57262/ade029-0304-153","DOIUrl":null,"url":null,"abstract":"We study the following critical Choquard equation on the Heisenberg group: \\begin{equation*} \\begin{cases} \\displaystyle {-\\Delta_H u }={\\mu} |u|^{q-2}u+\\int_{\\Omega} \\frac{|u(\\eta)|^{Q_{\\lambda}^{\\ast}}} {|\\eta^{-1}\\xi|^{\\lambda}} d\\eta|u|^{Q_{\\lambda}^{\\ast}-2}u&\\mbox{in }\\ \\Omega, u=0&\\mbox{on }\\ \\partial\\Omega, \\end{cases} \\end{equation*} where $\\Omega\\subset \\mathbb{H}^N$ is a smooth bounded domain, $\\Delta_H$ is the Kohn-Laplacian on the Heisenberg group $\\mathbb{H}^N$, $1<q<2$ or $2<q<Q_\\lambda^\\ast$, $\\mu>0$, $0<\\lambda<Q=2N+2$, and $Q_{\\lambda}^{\\ast}=\\frac{2Q-\\lambda}{Q-2}$ is the critical exponent. Using the concentration compactness principle and the critical point theory, we prove that the above problem has the least two positive solutions for $1<q<2$ in the case of low perturbations (small values of $\\mu$), and has a nontrivial solution for $2<q<Q_\\lambda^\\ast$ in the case of high perturbations (large values of $\\mu$). Moreover, for $1<q<2$, we also show that there is a positive ground state solution, and for $2<q<Q_\\lambda^\\ast$, there are at least $n$ pairs of nontrivial weak solutions.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High and low perturbations of the critical Choquard equation on the Heisenberg group\",\"authors\":\"Shujie Bai, Yueqiang Song, Duvsan D. Repovvs\",\"doi\":\"10.57262/ade029-0304-153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the following critical Choquard equation on the Heisenberg group: \\\\begin{equation*} \\\\begin{cases} \\\\displaystyle {-\\\\Delta_H u }={\\\\mu} |u|^{q-2}u+\\\\int_{\\\\Omega} \\\\frac{|u(\\\\eta)|^{Q_{\\\\lambda}^{\\\\ast}}} {|\\\\eta^{-1}\\\\xi|^{\\\\lambda}} d\\\\eta|u|^{Q_{\\\\lambda}^{\\\\ast}-2}u&\\\\mbox{in }\\\\ \\\\Omega, u=0&\\\\mbox{on }\\\\ \\\\partial\\\\Omega, \\\\end{cases} \\\\end{equation*} where $\\\\Omega\\\\subset \\\\mathbb{H}^N$ is a smooth bounded domain, $\\\\Delta_H$ is the Kohn-Laplacian on the Heisenberg group $\\\\mathbb{H}^N$, $1<q<2$ or $2<q<Q_\\\\lambda^\\\\ast$, $\\\\mu>0$, $0<\\\\lambda<Q=2N+2$, and $Q_{\\\\lambda}^{\\\\ast}=\\\\frac{2Q-\\\\lambda}{Q-2}$ is the critical exponent. Using the concentration compactness principle and the critical point theory, we prove that the above problem has the least two positive solutions for $1<q<2$ in the case of low perturbations (small values of $\\\\mu$), and has a nontrivial solution for $2<q<Q_\\\\lambda^\\\\ast$ in the case of high perturbations (large values of $\\\\mu$). Moreover, for $1<q<2$, we also show that there is a positive ground state solution, and for $2<q<Q_\\\\lambda^\\\\ast$, there are at least $n$ pairs of nontrivial weak solutions.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade029-0304-153\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade029-0304-153","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究海森堡群上的下列临界乔夸尔方程:\Begin{equation*}\开始\{-Delta_H u }={mu} |u|^{q-2}u+\int_{\Omega} \frac{|u(\eta)|^{Q_{\lambda}^{\ast}} }{|\eta^{-1}\xi|^{\lambda}} d\eta|u|^{Q_{\lambda}^{\ast}-2}u&\mbox{in }\Omega, u=0&\mbox{on }\partial\Omega, (end{cases}\end{equation*} 其中 $\Omega\subset \mathbb{H}^N$ 是光滑有界域,$\Delta_H$ 是海森堡群 $\mathbb{H}^N$ 上的 Kohn-Laplacian, $10$, $0<\lambda本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
High and low perturbations of the critical Choquard equation on the Heisenberg group
We study the following critical Choquard equation on the Heisenberg group: \begin{equation*} \begin{cases} \displaystyle {-\Delta_H u }={\mu} |u|^{q-2}u+\int_{\Omega} \frac{|u(\eta)|^{Q_{\lambda}^{\ast}}} {|\eta^{-1}\xi|^{\lambda}} d\eta|u|^{Q_{\lambda}^{\ast}-2}u&\mbox{in }\ \Omega, u=0&\mbox{on }\ \partial\Omega, \end{cases} \end{equation*} where $\Omega\subset \mathbb{H}^N$ is a smooth bounded domain, $\Delta_H$ is the Kohn-Laplacian on the Heisenberg group $\mathbb{H}^N$, $10$, $0<\lambda
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信