具有未知异方差测量误差的线性变量误差模型

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
L. Nghiem, Cornelis J. Potgieter
{"title":"具有未知异方差测量误差的线性变量误差模型","authors":"L. Nghiem, Cornelis J. Potgieter","doi":"10.5705/ss.202022.0331","DOIUrl":null,"url":null,"abstract":"In the classic measurement error framework, covariates are contaminated by independent additive noise. This paper considers parameter estimation in such a linear errors-in-variables model where the unknown measurement error distribution is heteroscedastic across observations. We propose a new generalized method of moment (GMM) estimator that combines a moment correction approach and a phase function-based approach. The former requires distributions to have four finite moments, while the latter relies on covariates having asymmetric distributions. The new estimator is shown to be consistent and asymptotically normal under appropriate regularity conditions. The asymptotic covariance of the estimator is derived, and the estimated standard error is computed using a fast bootstrap procedure. The GMM estimator is demonstrated to have strong finite sample performance in numerical studies, especially when the measurement errors follow non-Gaussian distributions.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Linear Errors-in-Variables Model with Unknown Heteroscedastic Measurement Errors\",\"authors\":\"L. Nghiem, Cornelis J. Potgieter\",\"doi\":\"10.5705/ss.202022.0331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the classic measurement error framework, covariates are contaminated by independent additive noise. This paper considers parameter estimation in such a linear errors-in-variables model where the unknown measurement error distribution is heteroscedastic across observations. We propose a new generalized method of moment (GMM) estimator that combines a moment correction approach and a phase function-based approach. The former requires distributions to have four finite moments, while the latter relies on covariates having asymmetric distributions. The new estimator is shown to be consistent and asymptotically normal under appropriate regularity conditions. The asymptotic covariance of the estimator is derived, and the estimated standard error is computed using a fast bootstrap procedure. The GMM estimator is demonstrated to have strong finite sample performance in numerical studies, especially when the measurement errors follow non-Gaussian distributions.\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0331\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0331","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在经典的测量误差框架中,协变量受到独立加性噪声的污染。本文考虑了这种线性变量误差模型中的参数估计问题,在这种模型中,未知测量误差分布在各观测值之间是异方差的。我们提出了一种新的广义矩法(GMM)估计方法,它结合了矩修正方法和基于相位函数的方法。前者要求分布具有四个有限矩,而后者则依赖于具有非对称分布的协变量。在适当的正则性条件下,新的估计器具有一致性和渐近正态性。推导出了估计器的渐近协方差,并使用快速引导程序计算了估计标准误差。在数值研究中,特别是当测量误差遵循非高斯分布时,证明了 GMM 估计器具有很强的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Linear Errors-in-Variables Model with Unknown Heteroscedastic Measurement Errors
In the classic measurement error framework, covariates are contaminated by independent additive noise. This paper considers parameter estimation in such a linear errors-in-variables model where the unknown measurement error distribution is heteroscedastic across observations. We propose a new generalized method of moment (GMM) estimator that combines a moment correction approach and a phase function-based approach. The former requires distributions to have four finite moments, while the latter relies on covariates having asymmetric distributions. The new estimator is shown to be consistent and asymptotically normal under appropriate regularity conditions. The asymptotic covariance of the estimator is derived, and the estimated standard error is computed using a fast bootstrap procedure. The GMM estimator is demonstrated to have strong finite sample performance in numerical studies, especially when the measurement errors follow non-Gaussian distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信