卸船许可中的 C4.5 和 KNN 决策树比较分析

Naurah Nazifah, Cahyo Prianto, Rolly Maulana Awangga
{"title":"卸船许可中的 C4.5 和 KNN 决策树比较分析","authors":"Naurah Nazifah, Cahyo Prianto, Rolly Maulana Awangga","doi":"10.36040/jati.v7i3.6889","DOIUrl":null,"url":null,"abstract":"Classification Decision Tree merupakan salah satu metode populer dalam analisis data dan pembelajaran mesin. Algoritma C4.5 adalah salah satu algoritma decision tree yang banyak digunakan karena kemampuannya dalam menghasilkan aturan keputusan yang dapat dipahami dengan mudah. Perizinan bongkar muatan kapal adalah proses krusial dalam operasi pelabuhan yang memastikan kapal dapat secara efisien dan aman melakukan bongkar muatan dalam upaya untuk meningkatkan efisiensi dan mengoptimalkan pengambilan keputusan perizinan. Penelitian ini bertujuan untuk melakukan analisis perbandingan metode machine leraning antara algoritma decision tree C4.5 dengan algoritma K-Nearest Neighbors (KNN). Penulis sudah membandingkan kinerja algoritma-algoritma ini berdasarkan kriteria yang termasuk akurasi prediksi, dengan Classification Decision Tree menghasilkan peramalan unggul sebesar 98,33% dan 97,60% untuk algoritma KNN dalam investigasi ini. Hasil analisis bahwa pemilihan algoritma decision tree harus didasarkan pada tujuan spesifik analisis dan karakteristik data yang digunakan. Jika interpretabilitas aturan keputusan menjadi faktor utama, algoritma C4.5 tetap menjadi pilihan yang baik. Namun, jika akurasi prediksi dan penanganan data yang tidak seimbang menjadi prioritas, algoritma KNN dapat menjadi pilihan yang lebih baik.","PeriodicalId":329787,"journal":{"name":"JATI (Jurnal Mahasiswa Teknik Informatika)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALISIS PERBANDINGAN DECISION TREE C4.5 DAN KNN DALAM PERIZINAN BONGKAR MUATAN KAPAL\",\"authors\":\"Naurah Nazifah, Cahyo Prianto, Rolly Maulana Awangga\",\"doi\":\"10.36040/jati.v7i3.6889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification Decision Tree merupakan salah satu metode populer dalam analisis data dan pembelajaran mesin. Algoritma C4.5 adalah salah satu algoritma decision tree yang banyak digunakan karena kemampuannya dalam menghasilkan aturan keputusan yang dapat dipahami dengan mudah. Perizinan bongkar muatan kapal adalah proses krusial dalam operasi pelabuhan yang memastikan kapal dapat secara efisien dan aman melakukan bongkar muatan dalam upaya untuk meningkatkan efisiensi dan mengoptimalkan pengambilan keputusan perizinan. Penelitian ini bertujuan untuk melakukan analisis perbandingan metode machine leraning antara algoritma decision tree C4.5 dengan algoritma K-Nearest Neighbors (KNN). Penulis sudah membandingkan kinerja algoritma-algoritma ini berdasarkan kriteria yang termasuk akurasi prediksi, dengan Classification Decision Tree menghasilkan peramalan unggul sebesar 98,33% dan 97,60% untuk algoritma KNN dalam investigasi ini. Hasil analisis bahwa pemilihan algoritma decision tree harus didasarkan pada tujuan spesifik analisis dan karakteristik data yang digunakan. Jika interpretabilitas aturan keputusan menjadi faktor utama, algoritma C4.5 tetap menjadi pilihan yang baik. Namun, jika akurasi prediksi dan penanganan data yang tidak seimbang menjadi prioritas, algoritma KNN dapat menjadi pilihan yang lebih baik.\",\"PeriodicalId\":329787,\"journal\":{\"name\":\"JATI (Jurnal Mahasiswa Teknik Informatika)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JATI (Jurnal Mahasiswa Teknik Informatika)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36040/jati.v7i3.6889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JATI (Jurnal Mahasiswa Teknik Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36040/jati.v7i3.6889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分类决策树是数据分析和机器学习中常用的方法之一。C4.5 算法是最广泛使用的决策树算法之一,因为它能够生成易于理解的决策规则。船舶卸载许可是港口运营中的一个关键流程,可确保船舶高效、安全地卸载,从而提高效率并优化许可决策。本研究旨在对 C4.5 决策树算法和 K-Nearest Neighbors (KNN) 算法之间的机器学习方法进行比较分析。作者根据预测准确率等标准对这些算法的性能进行了比较,在这项调查中,分类决策树的预测准确率为 98.33%,而 KNN 算法的预测准确率为 97.60%。据分析,决策树算法的选择应基于具体的分析目标和所用数据的特点。如果决策规则的可解释性是主要因素,那么 C4.5 算法仍然是一个不错的选择。但是,如果预测准确性和处理不平衡数据是优先考虑的因素,那么 KNN 算法可能是更好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS PERBANDINGAN DECISION TREE C4.5 DAN KNN DALAM PERIZINAN BONGKAR MUATAN KAPAL
Classification Decision Tree merupakan salah satu metode populer dalam analisis data dan pembelajaran mesin. Algoritma C4.5 adalah salah satu algoritma decision tree yang banyak digunakan karena kemampuannya dalam menghasilkan aturan keputusan yang dapat dipahami dengan mudah. Perizinan bongkar muatan kapal adalah proses krusial dalam operasi pelabuhan yang memastikan kapal dapat secara efisien dan aman melakukan bongkar muatan dalam upaya untuk meningkatkan efisiensi dan mengoptimalkan pengambilan keputusan perizinan. Penelitian ini bertujuan untuk melakukan analisis perbandingan metode machine leraning antara algoritma decision tree C4.5 dengan algoritma K-Nearest Neighbors (KNN). Penulis sudah membandingkan kinerja algoritma-algoritma ini berdasarkan kriteria yang termasuk akurasi prediksi, dengan Classification Decision Tree menghasilkan peramalan unggul sebesar 98,33% dan 97,60% untuk algoritma KNN dalam investigasi ini. Hasil analisis bahwa pemilihan algoritma decision tree harus didasarkan pada tujuan spesifik analisis dan karakteristik data yang digunakan. Jika interpretabilitas aturan keputusan menjadi faktor utama, algoritma C4.5 tetap menjadi pilihan yang baik. Namun, jika akurasi prediksi dan penanganan data yang tidak seimbang menjadi prioritas, algoritma KNN dapat menjadi pilihan yang lebih baik.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信