不使用运动学模型的自适应卡尔曼滤波算法

Q4 Earth and Planetary Sciences
Hnin Lae Wah, Aung Myo Thant Sin
{"title":"不使用运动学模型的自适应卡尔曼滤波算法","authors":"Hnin Lae Wah, Aung Myo Thant Sin","doi":"10.11113/aej.v13.19123","DOIUrl":null,"url":null,"abstract":"The performance and accuracy of Kalman filter depends on its gain value related to the process noise covariance and the measurement noise variance which may vary according to experimental settings such as noise and sampling time. Thus, setting the appropriate values for the noise variances that fit for a wide range of experimental setting is a challenge for conventional Kalman filter. This paper proposes an adaptive Kalman filter with the adaptive noise variance for velocity estimation without using kinematic model. By applying only the quantized position measurement signal generated from the optical incremental encoder, an adaptive process noise variance is proposed. The experimental results show that the proposed method outperforms the conventional Kalman filter in achieving accurate and smooth velocity estimation without large time delay.","PeriodicalId":36749,"journal":{"name":"ASEAN Engineering Journal","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN ADAPTIVE KALMAN FILTERING ALGORITHM WITHOUT USING KINEMATIC MODELS\",\"authors\":\"Hnin Lae Wah, Aung Myo Thant Sin\",\"doi\":\"10.11113/aej.v13.19123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance and accuracy of Kalman filter depends on its gain value related to the process noise covariance and the measurement noise variance which may vary according to experimental settings such as noise and sampling time. Thus, setting the appropriate values for the noise variances that fit for a wide range of experimental setting is a challenge for conventional Kalman filter. This paper proposes an adaptive Kalman filter with the adaptive noise variance for velocity estimation without using kinematic model. By applying only the quantized position measurement signal generated from the optical incremental encoder, an adaptive process noise variance is proposed. The experimental results show that the proposed method outperforms the conventional Kalman filter in achieving accurate and smooth velocity estimation without large time delay.\",\"PeriodicalId\":36749,\"journal\":{\"name\":\"ASEAN Engineering Journal\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/aej.v13.19123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/aej.v13.19123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

卡尔曼滤波器的性能和精度取决于其与过程噪声协方差和测量噪声方差相关的增益值,而过程噪声协方差和测量噪声方差可能因噪声和采样时间等实验设置而异。因此,为噪声方差设定适合各种实验设置的适当值是传统卡尔曼滤波器面临的一个挑战。本文提出了一种具有自适应噪声方差的自适应卡尔曼滤波器,用于不使用运动学模型的速度估计。通过仅应用光学增量式编码器产生的量化位置测量信号,提出了一种自适应过程噪声方差。实验结果表明,所提出的方法在实现精确、平滑的速度估计方面优于传统的卡尔曼滤波器,而且没有大的时间延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN ADAPTIVE KALMAN FILTERING ALGORITHM WITHOUT USING KINEMATIC MODELS
The performance and accuracy of Kalman filter depends on its gain value related to the process noise covariance and the measurement noise variance which may vary according to experimental settings such as noise and sampling time. Thus, setting the appropriate values for the noise variances that fit for a wide range of experimental setting is a challenge for conventional Kalman filter. This paper proposes an adaptive Kalman filter with the adaptive noise variance for velocity estimation without using kinematic model. By applying only the quantized position measurement signal generated from the optical incremental encoder, an adaptive process noise variance is proposed. The experimental results show that the proposed method outperforms the conventional Kalman filter in achieving accurate and smooth velocity estimation without large time delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASEAN Engineering Journal
ASEAN Engineering Journal Engineering-Engineering (all)
CiteScore
0.60
自引率
0.00%
发文量
75
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信