{"title":"广义混合乘积理想的里斯代数的规范性","authors":"M. La Barbiera, R. Moghimipor","doi":"10.24330/ieja.1402961","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field and $K[x_1,x_{2}]$ the polynomial ring in two variables over $K$ with each $x_i$ of degree $1$. Let $L$ be the generalized mixed product ideal induced by a monomial ideal $I\\subset K[x_1,x_2]$, where the ideals substituting the monomials in $I$ are squarefree Veronese ideals. In this paper, we study the integral closure of $L$, and the normality of $\\mathcal{R}(L)$, the Rees algebra of $L$. Furthermore, we give a geometric description of the integral closure of $\\mathcal{R}(L)$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":"54 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normality of Rees algebras of generalized mixed product ideals\",\"authors\":\"M. La Barbiera, R. Moghimipor\",\"doi\":\"10.24330/ieja.1402961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a field and $K[x_1,x_{2}]$ the polynomial ring in two variables over $K$ with each $x_i$ of degree $1$. Let $L$ be the generalized mixed product ideal induced by a monomial ideal $I\\\\subset K[x_1,x_2]$, where the ideals substituting the monomials in $I$ are squarefree Veronese ideals. In this paper, we study the integral closure of $L$, and the normality of $\\\\mathcal{R}(L)$, the Rees algebra of $L$. Furthermore, we give a geometric description of the integral closure of $\\\\mathcal{R}(L)$.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.1402961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1402961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Normality of Rees algebras of generalized mixed product ideals
Let $K$ be a field and $K[x_1,x_{2}]$ the polynomial ring in two variables over $K$ with each $x_i$ of degree $1$. Let $L$ be the generalized mixed product ideal induced by a monomial ideal $I\subset K[x_1,x_2]$, where the ideals substituting the monomials in $I$ are squarefree Veronese ideals. In this paper, we study the integral closure of $L$, and the normality of $\mathcal{R}(L)$, the Rees algebra of $L$. Furthermore, we give a geometric description of the integral closure of $\mathcal{R}(L)$.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.