使用伯努利小波技术数值求解二阶奇异微分方程的比较研究

IF 1 Q1 MATHEMATICS
Kailash Yadav, Ateq Alsaadi
{"title":"使用伯努利小波技术数值求解二阶奇异微分方程的比较研究","authors":"Kailash Yadav, Ateq Alsaadi","doi":"10.29020/nybg.ejpam.v16i4.4916","DOIUrl":null,"url":null,"abstract":"The main objective of this article is to discuss a numerical method for solving singular differential equations based on wavelets. Singular differential equations are first transformed into a system of linear algebraic equations, and then the linear system’s solution produces the unknown coefficients. Along with its estimated error, the convergence of the approximative solution is alsodetermined. Some numerical examples are thought to show that Bernoulli wavelet is better than Chebyshev and Legendre wavelet and other existing techniques.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Numerical Solution of Second-order Singular Differential Equations Using Bernoulli Wavelet Techniques\",\"authors\":\"Kailash Yadav, Ateq Alsaadi\",\"doi\":\"10.29020/nybg.ejpam.v16i4.4916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this article is to discuss a numerical method for solving singular differential equations based on wavelets. Singular differential equations are first transformed into a system of linear algebraic equations, and then the linear system’s solution produces the unknown coefficients. Along with its estimated error, the convergence of the approximative solution is alsodetermined. Some numerical examples are thought to show that Bernoulli wavelet is better than Chebyshev and Legendre wavelet and other existing techniques.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i4.4916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是讨论一种基于小波的求解奇异微分方程的数值方法。奇异微分方程首先被转化为线性代数方程组,然后线性方程组的解产生未知系数。在估计误差的同时,还确定了近似解的收敛性。一些数值实例表明,伯努利小波优于切比雪夫小波、勒让德小波和其他现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Numerical Solution of Second-order Singular Differential Equations Using Bernoulli Wavelet Techniques
The main objective of this article is to discuss a numerical method for solving singular differential equations based on wavelets. Singular differential equations are first transformed into a system of linear algebraic equations, and then the linear system’s solution produces the unknown coefficients. Along with its estimated error, the convergence of the approximative solution is alsodetermined. Some numerical examples are thought to show that Bernoulli wavelet is better than Chebyshev and Legendre wavelet and other existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信