医学诊断支持算法中的病人疾病状态建模模糊集

Andrzej Ameljańczyk, Tomasz Ameljańczyk
{"title":"医学诊断支持算法中的病人疾病状态建模模糊集","authors":"Andrzej Ameljańczyk, Tomasz Ameljańczyk","doi":"10.5604/01.3001.0054.1486","DOIUrl":null,"url":null,"abstract":"The article presents the concept of using fuzzy sets methodology in modelling patientʼs disease states for preliminary medical diagnosis. The preliminary medical diagnosis is based on the identified disease symptoms. The basis of the algorithm are descriptions of the patientʼs disease status and patterns of disease entities. These patterns were defined as fuzzy sets. The paper presents simple classifiers that allow he a preliminary diagnosis based on the analysis of fuzzy sets for the use of the general practitioner.","PeriodicalId":240434,"journal":{"name":"Computer Science and Mathematical Modelling","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy sets in modeling patient’s disease states in medical diagnostics support algorithms\",\"authors\":\"Andrzej Ameljańczyk, Tomasz Ameljańczyk\",\"doi\":\"10.5604/01.3001.0054.1486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article presents the concept of using fuzzy sets methodology in modelling patientʼs disease states for preliminary medical diagnosis. The preliminary medical diagnosis is based on the identified disease symptoms. The basis of the algorithm are descriptions of the patientʼs disease status and patterns of disease entities. These patterns were defined as fuzzy sets. The paper presents simple classifiers that allow he a preliminary diagnosis based on the analysis of fuzzy sets for the use of the general practitioner.\",\"PeriodicalId\":240434,\"journal\":{\"name\":\"Computer Science and Mathematical Modelling\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0054.1486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0054.1486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章介绍了使用模糊集方法模拟病人疾病状态进行初步医疗诊断的概念。初步医疗诊断基于已确定的疾病症状。该算法的基础是病人疾病状态的描述和疾病实体的模式。这些模式被定义为模糊集。本文介绍了一些简单的分类器,这些分类器可以在模糊集分析的基础上进行初步诊断,供全科医生使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy sets in modeling patient’s disease states in medical diagnostics support algorithms
The article presents the concept of using fuzzy sets methodology in modelling patientʼs disease states for preliminary medical diagnosis. The preliminary medical diagnosis is based on the identified disease symptoms. The basis of the algorithm are descriptions of the patientʼs disease status and patterns of disease entities. These patterns were defined as fuzzy sets. The paper presents simple classifiers that allow he a preliminary diagnosis based on the analysis of fuzzy sets for the use of the general practitioner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信