若干博弈论问题的强化学习解决方案概览

Robert Jarosz
{"title":"若干博弈论问题的强化学习解决方案概览","authors":"Robert Jarosz","doi":"10.5604/01.3001.0053.9698","DOIUrl":null,"url":null,"abstract":"This paper collects several applications of reinforcement learning in solving some problems related to game theory. The methods were selected to possibly show variety of problems and approaches. Selections includes Thompson Sampling, Q-learning, DQN and AlphaGo Zero using Monte Carlo Tree Search algorithm. Paper attempts to show intuition behind proposed algorithms with shallow explaining of technical details. This approach aims at presenting overview of the topic without assuming deep knowledge about statistics and artificial intelligence.","PeriodicalId":240434,"journal":{"name":"Computer Science and Mathematical Modelling","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of selected reinforcement learning solutions to several game theory problems\",\"authors\":\"Robert Jarosz\",\"doi\":\"10.5604/01.3001.0053.9698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper collects several applications of reinforcement learning in solving some problems related to game theory. The methods were selected to possibly show variety of problems and approaches. Selections includes Thompson Sampling, Q-learning, DQN and AlphaGo Zero using Monte Carlo Tree Search algorithm. Paper attempts to show intuition behind proposed algorithms with shallow explaining of technical details. This approach aims at presenting overview of the topic without assuming deep knowledge about statistics and artificial intelligence.\",\"PeriodicalId\":240434,\"journal\":{\"name\":\"Computer Science and Mathematical Modelling\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0053.9698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0053.9698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文收集了强化学习在解决博弈论相关问题中的几种应用。选择这些方法是为了展示各种问题和方法。所选方法包括汤普森采样、Q-learning、DQN 和使用蒙特卡洛树搜索算法的 AlphaGo Zero。论文试图通过对技术细节的浅显解释,展示所提算法背后的直觉。这种方法旨在介绍该主题的概况,而不假定对统计学和人工智能有很深的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of selected reinforcement learning solutions to several game theory problems
This paper collects several applications of reinforcement learning in solving some problems related to game theory. The methods were selected to possibly show variety of problems and approaches. Selections includes Thompson Sampling, Q-learning, DQN and AlphaGo Zero using Monte Carlo Tree Search algorithm. Paper attempts to show intuition behind proposed algorithms with shallow explaining of technical details. This approach aims at presenting overview of the topic without assuming deep knowledge about statistics and artificial intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信