利用迁移学习生成图像标题

Radosław Kopiński, Karol Antczak
{"title":"利用迁移学习生成图像标题","authors":"Radosław Kopiński, Karol Antczak","doi":"10.5604/01.3001.0053.9697","DOIUrl":null,"url":null,"abstract":"This paper describes an image caption generation system using deep neural networks. The model is trained to maximize the probability of generated sentence, given the image. The model utilizes transfer learning in the form of pretrained convolutional neural networks to preprocess the image data. The datasets are composed of a still photographs and associated with it, five captions in English language. Constructed model is compared to other similarly constructed models using BLEU score system and ways to further improve its performance are proposed.","PeriodicalId":240434,"journal":{"name":"Computer Science and Mathematical Modelling","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image caption generation using transfer learning\",\"authors\":\"Radosław Kopiński, Karol Antczak\",\"doi\":\"10.5604/01.3001.0053.9697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an image caption generation system using deep neural networks. The model is trained to maximize the probability of generated sentence, given the image. The model utilizes transfer learning in the form of pretrained convolutional neural networks to preprocess the image data. The datasets are composed of a still photographs and associated with it, five captions in English language. Constructed model is compared to other similarly constructed models using BLEU score system and ways to further improve its performance are proposed.\",\"PeriodicalId\":240434,\"journal\":{\"name\":\"Computer Science and Mathematical Modelling\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0053.9697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0053.9697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种使用深度神经网络的图像标题生成系统。该模型的训练目的是在给定图像的情况下,最大限度地提高生成句子的概率。该模型利用预训练卷积神经网络形式的迁移学习来预处理图像数据。数据集由一张静态照片和五个英文标题组成。利用 BLEU 评分系统将构建的模型与其他类似模型进行了比较,并提出了进一步提高其性能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image caption generation using transfer learning
This paper describes an image caption generation system using deep neural networks. The model is trained to maximize the probability of generated sentence, given the image. The model utilizes transfer learning in the form of pretrained convolutional neural networks to preprocess the image data. The datasets are composed of a still photographs and associated with it, five captions in English language. Constructed model is compared to other similarly constructed models using BLEU score system and ways to further improve its performance are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信