关于统计和功能数据分析的一些成果

Sophie Dabo-Niang, Julien Ah-Pine, Pamela Llop, A. Yao
{"title":"关于统计和功能数据分析的一些成果","authors":"Sophie Dabo-Niang, Julien Ah-Pine, Pamela Llop, A. Yao","doi":"10.1051/proc/202374002","DOIUrl":null,"url":null,"abstract":"This paper presents some recent results on regression and classification in Functional Data Analysis setting. The first work decated to Multiple kernel SVM for classifying functional data in Sobolev spaces focus on optimization of the information from each derivatives of the original functions, the second work devoted to An input/output-based aggregation rule for functional data classification when the last is interested with the problem of regression if the functional data lives in a finite dimensionnal submanifold.","PeriodicalId":505884,"journal":{"name":"ESAIM: Proceedings and Surveys","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on statistics and functional data analysis\",\"authors\":\"Sophie Dabo-Niang, Julien Ah-Pine, Pamela Llop, A. Yao\",\"doi\":\"10.1051/proc/202374002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some recent results on regression and classification in Functional Data Analysis setting. The first work decated to Multiple kernel SVM for classifying functional data in Sobolev spaces focus on optimization of the information from each derivatives of the original functions, the second work devoted to An input/output-based aggregation rule for functional data classification when the last is interested with the problem of regression if the functional data lives in a finite dimensionnal submanifold.\",\"PeriodicalId\":505884,\"journal\":{\"name\":\"ESAIM: Proceedings and Surveys\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM: Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/proc/202374002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202374002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在函数数据分析环境中进行回归和分类的一些最新成果。第一项研究是在 Sobolev 空间中对函数数据进行分类的多重核 SVM,重点是优化原始函数每个导数的信息;第二项研究是基于输入/输出的函数数据分类聚合规则;最后一项研究是在函数数据位于有限维度子实体中时的回归问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on statistics and functional data analysis
This paper presents some recent results on regression and classification in Functional Data Analysis setting. The first work decated to Multiple kernel SVM for classifying functional data in Sobolev spaces focus on optimization of the information from each derivatives of the original functions, the second work devoted to An input/output-based aggregation rule for functional data classification when the last is interested with the problem of regression if the functional data lives in a finite dimensionnal submanifold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信