{"title":"预测天然气-重油/沥青系统密度的函数和体积转换策略的比较评估","authors":"Esther Anyi Atonge, Daoyong Yang","doi":"10.2118/217980-pa","DOIUrl":null,"url":null,"abstract":"In this work, a unified, consistent, and efficient framework has been proposed to better predict the density of a gas(es)-heavy oil/bitumen system by using the Peng-Robinson equation of state (PR EOS) and Soave-Redlich-Kwong (SRK) EOS together with α functions and volume-translation (VT) strategies, respectively. With a database comprising 218 experimentally measured densities for gas(es)-heavy oil/bitumen systems, five α functions defined at a reduced temperature (Tr) of 0.70 as well as three new α functions at Tr = 0.60 together with four VT strategies are selected and evaluated. For α Functions 1 to 4 defined at Tr = 0.70, VTs 1 to 4 lead to an overall absolute average relative deviation (AARD) of 7.21%, 9.74%, 7.02%, and 7.16%, respectively, for predicting the mixture densities. For α Function 5 defined at Tr = 0.70, these four VT strategies predict the mixture density with an AARD of 3.13%, 5.01%, 2.92%, and 2.56%, respectively. As for the two new α Functions 7 and 8 defined at Tr = 0.60, these four VT strategies predict the mixture density with an AARD of 1.38%, 2.57%, 1.34%, and 1.67%, respectively, among which VT 3 has a very close prediction compared to an AARD of 1.31% obtained from the ideal mixing rule with effective density (IM-E).","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":"50 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Evaluation of a Functions and Volume-Translation Strategies to Predict Densities for Gas(es)-Heavy Oil/Bitumen Systems\",\"authors\":\"Esther Anyi Atonge, Daoyong Yang\",\"doi\":\"10.2118/217980-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a unified, consistent, and efficient framework has been proposed to better predict the density of a gas(es)-heavy oil/bitumen system by using the Peng-Robinson equation of state (PR EOS) and Soave-Redlich-Kwong (SRK) EOS together with α functions and volume-translation (VT) strategies, respectively. With a database comprising 218 experimentally measured densities for gas(es)-heavy oil/bitumen systems, five α functions defined at a reduced temperature (Tr) of 0.70 as well as three new α functions at Tr = 0.60 together with four VT strategies are selected and evaluated. For α Functions 1 to 4 defined at Tr = 0.70, VTs 1 to 4 lead to an overall absolute average relative deviation (AARD) of 7.21%, 9.74%, 7.02%, and 7.16%, respectively, for predicting the mixture densities. For α Function 5 defined at Tr = 0.70, these four VT strategies predict the mixture density with an AARD of 3.13%, 5.01%, 2.92%, and 2.56%, respectively. As for the two new α Functions 7 and 8 defined at Tr = 0.60, these four VT strategies predict the mixture density with an AARD of 1.38%, 2.57%, 1.34%, and 1.67%, respectively, among which VT 3 has a very close prediction compared to an AARD of 1.31% obtained from the ideal mixing rule with effective density (IM-E).\",\"PeriodicalId\":22252,\"journal\":{\"name\":\"SPE Journal\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/217980-pa\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/217980-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Comparative Evaluation of a Functions and Volume-Translation Strategies to Predict Densities for Gas(es)-Heavy Oil/Bitumen Systems
In this work, a unified, consistent, and efficient framework has been proposed to better predict the density of a gas(es)-heavy oil/bitumen system by using the Peng-Robinson equation of state (PR EOS) and Soave-Redlich-Kwong (SRK) EOS together with α functions and volume-translation (VT) strategies, respectively. With a database comprising 218 experimentally measured densities for gas(es)-heavy oil/bitumen systems, five α functions defined at a reduced temperature (Tr) of 0.70 as well as three new α functions at Tr = 0.60 together with four VT strategies are selected and evaluated. For α Functions 1 to 4 defined at Tr = 0.70, VTs 1 to 4 lead to an overall absolute average relative deviation (AARD) of 7.21%, 9.74%, 7.02%, and 7.16%, respectively, for predicting the mixture densities. For α Function 5 defined at Tr = 0.70, these four VT strategies predict the mixture density with an AARD of 3.13%, 5.01%, 2.92%, and 2.56%, respectively. As for the two new α Functions 7 and 8 defined at Tr = 0.60, these four VT strategies predict the mixture density with an AARD of 1.38%, 2.57%, 1.34%, and 1.67%, respectively, among which VT 3 has a very close prediction compared to an AARD of 1.31% obtained from the ideal mixing rule with effective density (IM-E).
期刊介绍:
Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.