铝合金木芯夹芯复合材料的冲击响应实验

Shusen Li, Yan Zhang
{"title":"铝合金木芯夹芯复合材料的冲击响应实验","authors":"Shusen Li, Yan Zhang","doi":"10.1177/16878132231200410","DOIUrl":null,"url":null,"abstract":"In this work, a protective structure with 2A12T4 aluminum alloy as the panel material and plywood as the core layer was designed. Penetration experiments were performed by firing multiple projectiles from a light gas gun. The impact behavior, damage mode, absorbed energy, and residual strength of the interlayer after impact were studied. The dynamic response and the failure of the interlayer were analyzed. Disbonding, fiber fracture, buckling, shear, and core fracture between the metal layer and the composite layer of the front panel were observed. The impact resistance of the sandwich plate was also studied. Based on the results of the experiments and numerical simulations, failure determination of the plywood core layer was achieved using the Hashin criterion, and a finite element model was established using ABAQUS software. High-speed impact testing was performed with a Hopkinson pressure bar. The stress–strain relationship under a high dynamic strain rate is given here, and the energy absorption efficiency under loading in different directions was analyzed. Finite element analysis of the representative volume elements in the wood microstructure was also carried out. The results reported here can be used to guide optimal design of sandwich structures suitable for use under high-speed impact conditions.","PeriodicalId":502561,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment on the impact response of aluminum alloy wood core sandwich composites\",\"authors\":\"Shusen Li, Yan Zhang\",\"doi\":\"10.1177/16878132231200410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a protective structure with 2A12T4 aluminum alloy as the panel material and plywood as the core layer was designed. Penetration experiments were performed by firing multiple projectiles from a light gas gun. The impact behavior, damage mode, absorbed energy, and residual strength of the interlayer after impact were studied. The dynamic response and the failure of the interlayer were analyzed. Disbonding, fiber fracture, buckling, shear, and core fracture between the metal layer and the composite layer of the front panel were observed. The impact resistance of the sandwich plate was also studied. Based on the results of the experiments and numerical simulations, failure determination of the plywood core layer was achieved using the Hashin criterion, and a finite element model was established using ABAQUS software. High-speed impact testing was performed with a Hopkinson pressure bar. The stress–strain relationship under a high dynamic strain rate is given here, and the energy absorption efficiency under loading in different directions was analyzed. Finite element analysis of the representative volume elements in the wood microstructure was also carried out. The results reported here can be used to guide optimal design of sandwich structures suitable for use under high-speed impact conditions.\",\"PeriodicalId\":502561,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231200410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231200410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,设计了一种以 2A12T4 铝合金为面板材料、胶合板为芯层的防护结构。通过轻型气枪发射多个弹丸进行了穿透实验。研究了冲击行为、破坏模式、吸收能量和冲击后夹层的残余强度。分析了夹层的动态响应和破坏情况。在前面板的金属层和复合材料层之间观察到了脱粘现象、纤维断裂、屈曲、剪切和核心断裂。此外,还研究了夹层板的抗冲击性能。根据实验和数值模拟的结果,使用 Hashin 准则确定了胶合板芯层的失效,并使用 ABAQUS 软件建立了有限元模型。使用霍普金森压力棒进行了高速冲击试验。在此给出了高动态应变率下的应力-应变关系,并分析了不同方向加载下的能量吸收效率。此外,还对木材微观结构中的代表性体积元素进行了有限元分析。本文报告的结果可用于指导适合高速冲击条件下使用的夹层结构的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiment on the impact response of aluminum alloy wood core sandwich composites
In this work, a protective structure with 2A12T4 aluminum alloy as the panel material and plywood as the core layer was designed. Penetration experiments were performed by firing multiple projectiles from a light gas gun. The impact behavior, damage mode, absorbed energy, and residual strength of the interlayer after impact were studied. The dynamic response and the failure of the interlayer were analyzed. Disbonding, fiber fracture, buckling, shear, and core fracture between the metal layer and the composite layer of the front panel were observed. The impact resistance of the sandwich plate was also studied. Based on the results of the experiments and numerical simulations, failure determination of the plywood core layer was achieved using the Hashin criterion, and a finite element model was established using ABAQUS software. High-speed impact testing was performed with a Hopkinson pressure bar. The stress–strain relationship under a high dynamic strain rate is given here, and the energy absorption efficiency under loading in different directions was analyzed. Finite element analysis of the representative volume elements in the wood microstructure was also carried out. The results reported here can be used to guide optimal design of sandwich structures suitable for use under high-speed impact conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信