基于图的个性化旅行推荐方法

IF 1.1 Q3 TRANSPORTATION SCIENCE & TECHNOLOGY
Francesco Maria Turno, Irina Jackiva
{"title":"基于图的个性化旅行推荐方法","authors":"Francesco Maria Turno, Irina Jackiva","doi":"10.2478/ttj-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract In the evolving domain of urban mobility systems, the integration of technology with user-centric strategies is pivotal. This research stands on the foundational concept of Mobility-as-a-Service, a user-centric intelligent mobility management distribution system that seeks to prioritize human needs over mere technological infrastructure. The study delves deep into the wealth of data available through mobile sensing technologies, highlighting the unprecedented understanding it offers into human mobility patterns, thus facilitating personalized route recommendations. The literature categorizes the study area into three interlinked categories: point-of-interest (POI) recommendation, travel planning, and trajectory modelling. In a significant stride, this research introduces a comprehensive understanding of hu-man mobility data and proposes a novel framework designed to tender personalized recommendations to travel planner users. The innovative framework employs a graph-based approach rooted in the Sussex-Huawei Locomotion dataset, leveraging an adaptation of Bellman-Ford’s algorithm. This modification considers factors such as perceived fatigue, frequency of trips to specific locations, and proximity to POIs, promising a path routed in past user experiences and preferences.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"23 1","pages":"423 - 433"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-Based Approach for Personalized Travel Recommendations\",\"authors\":\"Francesco Maria Turno, Irina Jackiva\",\"doi\":\"10.2478/ttj-2023-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the evolving domain of urban mobility systems, the integration of technology with user-centric strategies is pivotal. This research stands on the foundational concept of Mobility-as-a-Service, a user-centric intelligent mobility management distribution system that seeks to prioritize human needs over mere technological infrastructure. The study delves deep into the wealth of data available through mobile sensing technologies, highlighting the unprecedented understanding it offers into human mobility patterns, thus facilitating personalized route recommendations. The literature categorizes the study area into three interlinked categories: point-of-interest (POI) recommendation, travel planning, and trajectory modelling. In a significant stride, this research introduces a comprehensive understanding of hu-man mobility data and proposes a novel framework designed to tender personalized recommendations to travel planner users. The innovative framework employs a graph-based approach rooted in the Sussex-Huawei Locomotion dataset, leveraging an adaptation of Bellman-Ford’s algorithm. This modification considers factors such as perceived fatigue, frequency of trips to specific locations, and proximity to POIs, promising a path routed in past user experiences and preferences.\",\"PeriodicalId\":44110,\"journal\":{\"name\":\"Transport and Telecommunication Journal\",\"volume\":\"23 1\",\"pages\":\"423 - 433\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport and Telecommunication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ttj-2023-0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport and Telecommunication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ttj-2023-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在不断发展的城市交通系统领域,将技术与以用户为中心的战略相结合至关重要。这项研究基于 "移动即服务"(Mobility-as-a-Service)这一基本概念,这是一种以用户为中心的智能移动管理分配系统,旨在优先考虑人的需求而非单纯的技术基础设施。本研究深入探讨了移动传感技术所提供的大量数据,强调了其对人类移动模式所提供的前所未有的理解,从而促进了个性化路线推荐。文献将研究领域分为三个相互关联的类别:兴趣点(POI)推荐、旅行规划和轨迹建模。本研究大踏步地引入了对胡人移动数据的全面理解,并提出了一个新颖的框架,旨在为旅行规划用户提供个性化推荐。该创新框架采用基于苏塞克斯-华为运动数据集的图方法,利用贝尔曼-福特算法的改编。这种修改考虑了感知疲劳、前往特定地点的频率以及与 POIs 的接近程度等因素,并根据用户过去的经验和偏好推荐路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-Based Approach for Personalized Travel Recommendations
Abstract In the evolving domain of urban mobility systems, the integration of technology with user-centric strategies is pivotal. This research stands on the foundational concept of Mobility-as-a-Service, a user-centric intelligent mobility management distribution system that seeks to prioritize human needs over mere technological infrastructure. The study delves deep into the wealth of data available through mobile sensing technologies, highlighting the unprecedented understanding it offers into human mobility patterns, thus facilitating personalized route recommendations. The literature categorizes the study area into three interlinked categories: point-of-interest (POI) recommendation, travel planning, and trajectory modelling. In a significant stride, this research introduces a comprehensive understanding of hu-man mobility data and proposes a novel framework designed to tender personalized recommendations to travel planner users. The innovative framework employs a graph-based approach rooted in the Sussex-Huawei Locomotion dataset, leveraging an adaptation of Bellman-Ford’s algorithm. This modification considers factors such as perceived fatigue, frequency of trips to specific locations, and proximity to POIs, promising a path routed in past user experiences and preferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport and Telecommunication Journal
Transport and Telecommunication Journal TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
3.00
自引率
0.00%
发文量
21
审稿时长
35 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信