由正交偏振态非同步化驱动的耗散孤子呼吸动力学

Zhiwei Huang, Sergey Sergyev, Qing Wang, Hani Kbashi, Dmitrii Stoliarov, Qianqian Huang, Yuze Dai, Zhijun Yan, Chengbo Mou
{"title":"由正交偏振态非同步化驱动的耗散孤子呼吸动力学","authors":"Zhiwei Huang, Sergey Sergyev, Qing Wang, Hani Kbashi, Dmitrii Stoliarov, Qianqian Huang, Yuze Dai, Zhijun Yan, Chengbo Mou","doi":"10.1117/1.APN.2.6.066007","DOIUrl":null,"url":null,"abstract":"Abstract. Breathing solitons, i.e., dynamic dissipative solitons with oscillating pulse shape and energy caused by different mechanisms of spatiotemporal instabilities, have received considerable interest from the aspects of nonlinear science and potential applications. However, by far, the study of breathing solitons is still limited within the time scale of hundreds of cavity round trips, which ignores the slow dynamics. To fill this lacuna, we theoretically investigate a new type of vector dissipative soliton breathing regime and experimentally demonstrate this concept using mode-locked fiber lasers, which arise from the desynchronization of orthogonal states of polarization (SOPs) in the form of complex oscillations of the phase difference between the states. The dynamic evolution of polarization states of the vector breathings solitons takes the form of a trajectory connecting two quasi-equilibrium orthogonal SOPs on the surface of the Poincaré sphere. The dwelling time near each state is on the scale of a tenth of a thousand cavity round trip times that equals the breathing period, which is up to 2 orders of magnitude longer than that for common breathers. The obtained results can reveal concepts in nonlinear science and may unlock approaches to the flexible manipulation of laser waveforms toward various applications in spectroscopy and metrology.","PeriodicalId":223078,"journal":{"name":"Advanced Photonics Nexus","volume":"30 1","pages":"066007 - 066007"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipative soliton breathing dynamics driven by desynchronization of orthogonal polarization states\",\"authors\":\"Zhiwei Huang, Sergey Sergyev, Qing Wang, Hani Kbashi, Dmitrii Stoliarov, Qianqian Huang, Yuze Dai, Zhijun Yan, Chengbo Mou\",\"doi\":\"10.1117/1.APN.2.6.066007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Breathing solitons, i.e., dynamic dissipative solitons with oscillating pulse shape and energy caused by different mechanisms of spatiotemporal instabilities, have received considerable interest from the aspects of nonlinear science and potential applications. However, by far, the study of breathing solitons is still limited within the time scale of hundreds of cavity round trips, which ignores the slow dynamics. To fill this lacuna, we theoretically investigate a new type of vector dissipative soliton breathing regime and experimentally demonstrate this concept using mode-locked fiber lasers, which arise from the desynchronization of orthogonal states of polarization (SOPs) in the form of complex oscillations of the phase difference between the states. The dynamic evolution of polarization states of the vector breathings solitons takes the form of a trajectory connecting two quasi-equilibrium orthogonal SOPs on the surface of the Poincaré sphere. The dwelling time near each state is on the scale of a tenth of a thousand cavity round trip times that equals the breathing period, which is up to 2 orders of magnitude longer than that for common breathers. The obtained results can reveal concepts in nonlinear science and may unlock approaches to the flexible manipulation of laser waveforms toward various applications in spectroscopy and metrology.\",\"PeriodicalId\":223078,\"journal\":{\"name\":\"Advanced Photonics Nexus\",\"volume\":\"30 1\",\"pages\":\"066007 - 066007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.APN.2.6.066007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.APN.2.6.066007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要呼吸孤子,即由不同时空不稳定性机制引起的具有振荡脉冲形状和能量的动态耗散孤子,已从非线性科学和潜在应用等方面受到广泛关注。然而,到目前为止,对呼吸孤子的研究仍局限于数百次空腔往返的时间尺度内,忽略了慢动力学。为了填补这一空白,我们从理论上研究了一种新型的矢量耗散孤子呼吸机制,并利用锁模光纤激光器从实验上证明了这一概念,它是由正交偏振态(SOP)的非同步化引起的,其形式为偏振态之间相位差的复杂振荡。矢量呼吸孤子偏振态的动态演化以轨迹的形式出现,轨迹连接 Poincaré 球表面上的两个准平衡正交 SOP。在每个状态附近的停留时间是腔体往返次数的万分之一,相当于呼吸周期,比普通呼吸子的停留时间长达两个数量级。所获得的结果揭示了非线性科学的概念,并可能开启灵活操纵激光波形的方法,从而实现光谱学和计量学的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative soliton breathing dynamics driven by desynchronization of orthogonal polarization states
Abstract. Breathing solitons, i.e., dynamic dissipative solitons with oscillating pulse shape and energy caused by different mechanisms of spatiotemporal instabilities, have received considerable interest from the aspects of nonlinear science and potential applications. However, by far, the study of breathing solitons is still limited within the time scale of hundreds of cavity round trips, which ignores the slow dynamics. To fill this lacuna, we theoretically investigate a new type of vector dissipative soliton breathing regime and experimentally demonstrate this concept using mode-locked fiber lasers, which arise from the desynchronization of orthogonal states of polarization (SOPs) in the form of complex oscillations of the phase difference between the states. The dynamic evolution of polarization states of the vector breathings solitons takes the form of a trajectory connecting two quasi-equilibrium orthogonal SOPs on the surface of the Poincaré sphere. The dwelling time near each state is on the scale of a tenth of a thousand cavity round trip times that equals the breathing period, which is up to 2 orders of magnitude longer than that for common breathers. The obtained results can reveal concepts in nonlinear science and may unlock approaches to the flexible manipulation of laser waveforms toward various applications in spectroscopy and metrology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信