{"title":"关于有 $ L^1 $ 数据的非局部 1-拉普拉斯方程的解","authors":"Dingding Li, Chao Zhang","doi":"10.3934/dcds.2023148","DOIUrl":null,"url":null,"abstract":"We study the solutions to a nonlocal 1-Laplacian equation given by $$ 2\\text{P.V.}\\int_{\\mathbb{R}^N}\\frac{u(x)-u(y)}{|u(x)-u(y)|} \\frac{dy}{|x-y|^{N+s}}=f(x) \\quad \\textmd{for } x\\in \\Omega, $$ with Dirichlet boundary condition $u(x)=0$ in $\\mathbb R^N\\backslash \\Omega$ and nonnegative $L^1$-data. By investigating the asymptotic behaviour of renormalized solutions $u_p$ to the nonlocal $p$-Laplacian equations as $p$ goes to $1^+$, we introduce a suitable definition of solutions and prove that the limit function $u$ of $\\{u_p\\}$ is a solution of the nonlocal $1$-Laplacian equation above.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solutions of nonlocal 1-Laplacian equation with $ L^1 $-data\",\"authors\":\"Dingding Li, Chao Zhang\",\"doi\":\"10.3934/dcds.2023148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the solutions to a nonlocal 1-Laplacian equation given by $$ 2\\\\text{P.V.}\\\\int_{\\\\mathbb{R}^N}\\\\frac{u(x)-u(y)}{|u(x)-u(y)|} \\\\frac{dy}{|x-y|^{N+s}}=f(x) \\\\quad \\\\textmd{for } x\\\\in \\\\Omega, $$ with Dirichlet boundary condition $u(x)=0$ in $\\\\mathbb R^N\\\\backslash \\\\Omega$ and nonnegative $L^1$-data. By investigating the asymptotic behaviour of renormalized solutions $u_p$ to the nonlocal $p$-Laplacian equations as $p$ goes to $1^+$, we introduce a suitable definition of solutions and prove that the limit function $u$ of $\\\\{u_p\\\\}$ is a solution of the nonlocal $1$-Laplacian equation above.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023148\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023148","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On the solutions of nonlocal 1-Laplacian equation with $ L^1 $-data
We study the solutions to a nonlocal 1-Laplacian equation given by $$ 2\text{P.V.}\int_{\mathbb{R}^N}\frac{u(x)-u(y)}{|u(x)-u(y)|} \frac{dy}{|x-y|^{N+s}}=f(x) \quad \textmd{for } x\in \Omega, $$ with Dirichlet boundary condition $u(x)=0$ in $\mathbb R^N\backslash \Omega$ and nonnegative $L^1$-data. By investigating the asymptotic behaviour of renormalized solutions $u_p$ to the nonlocal $p$-Laplacian equations as $p$ goes to $1^+$, we introduce a suitable definition of solutions and prove that the limit function $u$ of $\{u_p\}$ is a solution of the nonlocal $1$-Laplacian equation above.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.