{"title":"利用纳秒脉冲激光在 SUS430 上形成的周期性结构的抗菌效果","authors":"Mikuru Okazaki, Masaki Hashida, Satoru Iwamori","doi":"10.2351/7.0001196","DOIUrl":null,"url":null,"abstract":"We investigated the laser-induced periodic surface structures (LIPSSs) formed on an SUS430 surface by irradiation with a nanosecond pulsed laser (Nd:YAG, wavelength of 532 nm, pulse width of 10 ns, number of pulses of 50, repetition rate of 10 Hz, and laser fluence of 1.2 J/cm2) and the antibacterial effect of the surface. LIPSSs with an interspacing of about 500 nm, which was close to the laser wavelength, were produced on the surface when the pulsed laser was near the ablation threshold. The film attachment method (JIS Z 2801) was used to measure the bacterial growth suppression on SUS430 surfaces with and without LIPSSs. On the surface without an LIPSS, the number of colonies was 1244, and on that with an LIPSS, the number was 198, indicating that the LIPSS formed by nanosecond pulsed laser irradiation inhibited the growth of bacteria. The chrome oxide layer on the SUS430 surface with the LIPSS may emit chrome ions from the edge of the LIPSS, enhancing the antibacterial effect.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial effect of periodic structure formed on SUS430 by using nanosecond pulsed laser\",\"authors\":\"Mikuru Okazaki, Masaki Hashida, Satoru Iwamori\",\"doi\":\"10.2351/7.0001196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the laser-induced periodic surface structures (LIPSSs) formed on an SUS430 surface by irradiation with a nanosecond pulsed laser (Nd:YAG, wavelength of 532 nm, pulse width of 10 ns, number of pulses of 50, repetition rate of 10 Hz, and laser fluence of 1.2 J/cm2) and the antibacterial effect of the surface. LIPSSs with an interspacing of about 500 nm, which was close to the laser wavelength, were produced on the surface when the pulsed laser was near the ablation threshold. The film attachment method (JIS Z 2801) was used to measure the bacterial growth suppression on SUS430 surfaces with and without LIPSSs. On the surface without an LIPSS, the number of colonies was 1244, and on that with an LIPSS, the number was 198, indicating that the LIPSS formed by nanosecond pulsed laser irradiation inhibited the growth of bacteria. The chrome oxide layer on the SUS430 surface with the LIPSS may emit chrome ions from the edge of the LIPSS, enhancing the antibacterial effect.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001196\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Antibacterial effect of periodic structure formed on SUS430 by using nanosecond pulsed laser
We investigated the laser-induced periodic surface structures (LIPSSs) formed on an SUS430 surface by irradiation with a nanosecond pulsed laser (Nd:YAG, wavelength of 532 nm, pulse width of 10 ns, number of pulses of 50, repetition rate of 10 Hz, and laser fluence of 1.2 J/cm2) and the antibacterial effect of the surface. LIPSSs with an interspacing of about 500 nm, which was close to the laser wavelength, were produced on the surface when the pulsed laser was near the ablation threshold. The film attachment method (JIS Z 2801) was used to measure the bacterial growth suppression on SUS430 surfaces with and without LIPSSs. On the surface without an LIPSS, the number of colonies was 1244, and on that with an LIPSS, the number was 198, indicating that the LIPSS formed by nanosecond pulsed laser irradiation inhibited the growth of bacteria. The chrome oxide layer on the SUS430 surface with the LIPSS may emit chrome ions from the edge of the LIPSS, enhancing the antibacterial effect.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.