{"title":"基于 LASSO 特征选择和 Swish 激活函数模型的凸最小角回归法计算启动存活率","authors":"Ramakrishna Allu, V. N. R. Padmanabhuni","doi":"10.2478/cait-2023-0039","DOIUrl":null,"url":null,"abstract":"Abstract A startup is a recently established business venture led by entrepreneurs, to create and offer new products or services. The discovery of promising startups is a challenging task for creditors, policymakers, and investors. Therefore, the startup survival rate prediction is required to be developed for the success/failure of startup companies. In this paper, the feature selection using the Convex Least Angle Regression Least Absolute Shrinkage and Selection Operator (CLAR-LASSO) is proposed to improve the classification of startup survival rate prediction. The Swish Activation Function based Long Short-Term Memory (SAFLSTM) is developed for classifying the survival rate of startups. Further, the Local Interpretable Model-agnostic Explanations (LIME) model interprets the predicted classification to the user. Existing research such as Hyper Parameter Tuning (HPT)-Logistic regression, HPT-Support Vector Machine (SVM), HPT-XGBoost, and SAFLSTM are used to compare the CLAR-LASSO. The accuracy of the CLAR-LASSO is 95.67% which is high when compared to the HPT-Logistic regression, HPT-SVM, HPT-XGBoost, and SAFLSTM.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate\",\"authors\":\"Ramakrishna Allu, V. N. R. Padmanabhuni\",\"doi\":\"10.2478/cait-2023-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A startup is a recently established business venture led by entrepreneurs, to create and offer new products or services. The discovery of promising startups is a challenging task for creditors, policymakers, and investors. Therefore, the startup survival rate prediction is required to be developed for the success/failure of startup companies. In this paper, the feature selection using the Convex Least Angle Regression Least Absolute Shrinkage and Selection Operator (CLAR-LASSO) is proposed to improve the classification of startup survival rate prediction. The Swish Activation Function based Long Short-Term Memory (SAFLSTM) is developed for classifying the survival rate of startups. Further, the Local Interpretable Model-agnostic Explanations (LIME) model interprets the predicted classification to the user. Existing research such as Hyper Parameter Tuning (HPT)-Logistic regression, HPT-Support Vector Machine (SVM), HPT-XGBoost, and SAFLSTM are used to compare the CLAR-LASSO. The accuracy of the CLAR-LASSO is 95.67% which is high when compared to the HPT-Logistic regression, HPT-SVM, HPT-XGBoost, and SAFLSTM.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2023-0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Convex Least Angle Regression Based LASSO Feature Selection and Swish Activation Function Model for Startup Survival Rate
Abstract A startup is a recently established business venture led by entrepreneurs, to create and offer new products or services. The discovery of promising startups is a challenging task for creditors, policymakers, and investors. Therefore, the startup survival rate prediction is required to be developed for the success/failure of startup companies. In this paper, the feature selection using the Convex Least Angle Regression Least Absolute Shrinkage and Selection Operator (CLAR-LASSO) is proposed to improve the classification of startup survival rate prediction. The Swish Activation Function based Long Short-Term Memory (SAFLSTM) is developed for classifying the survival rate of startups. Further, the Local Interpretable Model-agnostic Explanations (LIME) model interprets the predicted classification to the user. Existing research such as Hyper Parameter Tuning (HPT)-Logistic regression, HPT-Support Vector Machine (SVM), HPT-XGBoost, and SAFLSTM are used to compare the CLAR-LASSO. The accuracy of the CLAR-LASSO is 95.67% which is high when compared to the HPT-Logistic regression, HPT-SVM, HPT-XGBoost, and SAFLSTM.