基于骨架数据的排球动作识别

Zhanhao Liang, Batyrkanov Jenish Isakunovich
{"title":"基于骨架数据的排球动作识别","authors":"Zhanhao Liang, Batyrkanov Jenish Isakunovich","doi":"10.54097/fcis.v5i3.14038","DOIUrl":null,"url":null,"abstract":"This research explores the intricacies of volleyball action recognition using skeleton data through the lens of the Long Short-Term Memory (LSTM) model. With the objective of accurately identifying distinct volleyball actions—Serve, Spike, Block, Dig, and Set—the study implemented a structured LSTM network, achieving a commendable 95% accuracy rate consistently across all actions. The findings underscore the transformative potential of deep learning, particularly the LSTM network, in sports analytics, suggesting a paradigm shift in understanding and analyzing sports actions. The research serves as a foundation for future studies, offering insights into the blend of artificial intelligence in sports, with applications extending to coaching support and enhanced sports broadcasts.","PeriodicalId":346823,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Volleyball Action Recognition based on Skeleton Data\",\"authors\":\"Zhanhao Liang, Batyrkanov Jenish Isakunovich\",\"doi\":\"10.54097/fcis.v5i3.14038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research explores the intricacies of volleyball action recognition using skeleton data through the lens of the Long Short-Term Memory (LSTM) model. With the objective of accurately identifying distinct volleyball actions—Serve, Spike, Block, Dig, and Set—the study implemented a structured LSTM network, achieving a commendable 95% accuracy rate consistently across all actions. The findings underscore the transformative potential of deep learning, particularly the LSTM network, in sports analytics, suggesting a paradigm shift in understanding and analyzing sports actions. The research serves as a foundation for future studies, offering insights into the blend of artificial intelligence in sports, with applications extending to coaching support and enhanced sports broadcasts.\",\"PeriodicalId\":346823,\"journal\":{\"name\":\"Frontiers in Computing and Intelligent Systems\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/fcis.v5i3.14038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/fcis.v5i3.14038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过长短期记忆(LSTM)模型的视角,利用骨架数据探索排球动作识别的复杂性。为了准确识别不同的排球动作--发球、扣球、拦网、扣球和接发球--该研究采用了结构化 LSTM 网络,在所有动作上都达到了令人称道的 95% 的准确率。研究结果凸显了深度学习,尤其是 LSTM 网络在体育分析领域的变革潜力,为理解和分析体育动作带来了范式转变。这项研究为今后的研究奠定了基础,为人工智能在体育领域的融合提供了见解,其应用范围还将扩展到教练支持和增强型体育转播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volleyball Action Recognition based on Skeleton Data
This research explores the intricacies of volleyball action recognition using skeleton data through the lens of the Long Short-Term Memory (LSTM) model. With the objective of accurately identifying distinct volleyball actions—Serve, Spike, Block, Dig, and Set—the study implemented a structured LSTM network, achieving a commendable 95% accuracy rate consistently across all actions. The findings underscore the transformative potential of deep learning, particularly the LSTM network, in sports analytics, suggesting a paradigm shift in understanding and analyzing sports actions. The research serves as a foundation for future studies, offering insights into the blend of artificial intelligence in sports, with applications extending to coaching support and enhanced sports broadcasts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信