基于改进型 YOLOv5s 的高速公路路面裂缝检测研究

Chunlin He, Jiaye Wu, Yujie Yang
{"title":"基于改进型 YOLOv5s 的高速公路路面裂缝检测研究","authors":"Chunlin He, Jiaye Wu, Yujie Yang","doi":"10.54097/fcis.v5i3.14020","DOIUrl":null,"url":null,"abstract":"In order to address the issues of missed detection, false detection, and low accuracy of current road cracks, we propose a road crack recognition model based on improved YOLOv5. Firstly, add a CBAM attention module to the backbone network to enhance feature extraction capabilities; Then, a weighted bidirectional feature pyramid (BiFPN) is incorporated into the model for multi-scale feature fusion, replacing the traditional feature pyramid (FPN)+pixel aggregation network (PAN) structure to enhance feature fusion. The experimental results indicate that the improved model outperforms the traditional YOLOV5 model in terms of mAP@0.5 By 17.3%, the improved YOLOv5 algorithm performs well in detecting road cracks and can quickly and accurately identify and locate cracks on the road.","PeriodicalId":346823,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Expressway Pavement Crack Detection based on Improved YOLOv5s\",\"authors\":\"Chunlin He, Jiaye Wu, Yujie Yang\",\"doi\":\"10.54097/fcis.v5i3.14020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to address the issues of missed detection, false detection, and low accuracy of current road cracks, we propose a road crack recognition model based on improved YOLOv5. Firstly, add a CBAM attention module to the backbone network to enhance feature extraction capabilities; Then, a weighted bidirectional feature pyramid (BiFPN) is incorporated into the model for multi-scale feature fusion, replacing the traditional feature pyramid (FPN)+pixel aggregation network (PAN) structure to enhance feature fusion. The experimental results indicate that the improved model outperforms the traditional YOLOV5 model in terms of mAP@0.5 By 17.3%, the improved YOLOv5 algorithm performs well in detecting road cracks and can quickly and accurately identify and locate cracks on the road.\",\"PeriodicalId\":346823,\"journal\":{\"name\":\"Frontiers in Computing and Intelligent Systems\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/fcis.v5i3.14020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/fcis.v5i3.14020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对目前道路裂缝存在的漏检、误检、准确率低等问题,我们提出了基于改进型 YOLOv5 的道路裂缝识别模型。首先,在骨干网络中加入 CBAM 注意模块,增强特征提取能力;然后,在模型中加入加权双向特征金字塔(BiFPN)进行多尺度特征融合,取代传统的特征金字塔(FPN)+像素聚合网络(PAN)结构,增强特征融合能力。实验结果表明,改进后的模型在 mAP@0.5 方面优于传统的 YOLOV5 模型 17.3%,改进后的 YOLOv5 算法在检测道路裂缝方面表现出色,能够快速准确地识别和定位道路裂缝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Expressway Pavement Crack Detection based on Improved YOLOv5s
In order to address the issues of missed detection, false detection, and low accuracy of current road cracks, we propose a road crack recognition model based on improved YOLOv5. Firstly, add a CBAM attention module to the backbone network to enhance feature extraction capabilities; Then, a weighted bidirectional feature pyramid (BiFPN) is incorporated into the model for multi-scale feature fusion, replacing the traditional feature pyramid (FPN)+pixel aggregation network (PAN) structure to enhance feature fusion. The experimental results indicate that the improved model outperforms the traditional YOLOV5 model in terms of mAP@0.5 By 17.3%, the improved YOLOv5 algorithm performs well in detecting road cracks and can quickly and accurately identify and locate cracks on the road.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信