用于句子嵌入的高效自监督交叉视图训练

IF 4.2 1区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Peerat Limkonchotiwat, Wuttikorn Ponwitayarat, Lalita Lowphansirikul, Can Udomcharoenchaikit, E. Chuangsuwanich, Sarana Nutanong
{"title":"用于句子嵌入的高效自监督交叉视图训练","authors":"Peerat Limkonchotiwat, Wuttikorn Ponwitayarat, Lalita Lowphansirikul, Can Udomcharoenchaikit, E. Chuangsuwanich, Sarana Nutanong","doi":"10.1162/tacl_a_00620","DOIUrl":null,"url":null,"abstract":"Abstract Self-supervised sentence representation learning is the task of constructing an embedding space for sentences without relying on human annotation efforts. One straightforward approach is to finetune a pretrained language model (PLM) with a representation learning method such as contrastive learning. While this approach achieves impressive performance on larger PLMs, the performance rapidly degrades as the number of parameters decreases. In this paper, we propose a framework called Self-supervised Cross-View Training (SCT) to narrow the performance gap between large and small PLMs. To evaluate the effectiveness of SCT, we compare it to 5 baseline and state-of-the-art competitors on seven Semantic Textual Similarity (STS) benchmarks using 5 PLMs with the number of parameters ranging from 4M to 340M. The experimental results show that STC outperforms the competitors for PLMs with less than 100M parameters in 18 of 21 cases.1","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"83 1","pages":"1572-1587"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Self-Supervised Cross-View Training For Sentence Embedding\",\"authors\":\"Peerat Limkonchotiwat, Wuttikorn Ponwitayarat, Lalita Lowphansirikul, Can Udomcharoenchaikit, E. Chuangsuwanich, Sarana Nutanong\",\"doi\":\"10.1162/tacl_a_00620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Self-supervised sentence representation learning is the task of constructing an embedding space for sentences without relying on human annotation efforts. One straightforward approach is to finetune a pretrained language model (PLM) with a representation learning method such as contrastive learning. While this approach achieves impressive performance on larger PLMs, the performance rapidly degrades as the number of parameters decreases. In this paper, we propose a framework called Self-supervised Cross-View Training (SCT) to narrow the performance gap between large and small PLMs. To evaluate the effectiveness of SCT, we compare it to 5 baseline and state-of-the-art competitors on seven Semantic Textual Similarity (STS) benchmarks using 5 PLMs with the number of parameters ranging from 4M to 340M. The experimental results show that STC outperforms the competitors for PLMs with less than 100M parameters in 18 of 21 cases.1\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"83 1\",\"pages\":\"1572-1587\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00620\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00620","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 自我监督的句子表征学习是在不依赖人工标注的情况下构建句子嵌入空间的任务。一种直接的方法是使用对比学习等表征学习方法对预先训练好的语言模型(PLM)进行微调。虽然这种方法在较大的 PLM 上取得了令人印象深刻的性能,但随着参数数量的减少,性能会迅速下降。在本文中,我们提出了一个名为自监督交叉视图训练(SCT)的框架,以缩小大型和小型 PLM 之间的性能差距。为了评估 SCT 的有效性,我们在 7 个语义文本相似性(STS)基准上将其与 5 个基准和最先进的竞争对手进行了比较,使用的是 5 个 PLM,参数数量从 400 万到 340 万不等。实验结果表明,对于参数少于 1 亿的 PLM,STC 在 21 个案例中有 18 个案例优于竞争对手1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Self-Supervised Cross-View Training For Sentence Embedding
Abstract Self-supervised sentence representation learning is the task of constructing an embedding space for sentences without relying on human annotation efforts. One straightforward approach is to finetune a pretrained language model (PLM) with a representation learning method such as contrastive learning. While this approach achieves impressive performance on larger PLMs, the performance rapidly degrades as the number of parameters decreases. In this paper, we propose a framework called Self-supervised Cross-View Training (SCT) to narrow the performance gap between large and small PLMs. To evaluate the effectiveness of SCT, we compare it to 5 baseline and state-of-the-art competitors on seven Semantic Textual Similarity (STS) benchmarks using 5 PLMs with the number of parameters ranging from 4M to 340M. The experimental results show that STC outperforms the competitors for PLMs with less than 100M parameters in 18 of 21 cases.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
32.60
自引率
4.60%
发文量
58
审稿时长
8 weeks
期刊介绍: The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信